首页> 外文期刊>Combustion and Flame >Multi-stage heat release in lean combustion: Insights from coupled tangential stretching rate (TSR) and computational singular perturbation (CSP) analysis
【24h】

Multi-stage heat release in lean combustion: Insights from coupled tangential stretching rate (TSR) and computational singular perturbation (CSP) analysis

机译:瘦燃烧中的多级热释放:耦合切向拉伸速率(TSR)和计算奇异扰动(CSP)分析的见解

获取原文
获取原文并翻译 | 示例
       

摘要

There is a growing interest in leaner burning internal combustion engines as an enabler for higher ther-modynamic efficiency. The extension of knock-limited compression ratio and the increase in specific heat ratio with lean combustion are key factors for boosting efficiency. Under lean burning conditions, there is emerging evidence that certain fuels exhibit unusual heat release characteristics. It has been reported that fuel/air mixtures undergo three-stage heat release or delayed high temperature heat release: starting with an initial low temperature heat release, similar to the one observed in two stage ignition, followed by an intermediate stage where thermal runaway is inhibited, and then advances to a relatively slow third stage of combustion. The focus of this study is to examine the conditions under which various fuels ex-hibit three stage ignition or delayed high temperature heat release. The auto-ignition of hydrocarbons/air mixtures is simulated in a closed adiabatic homogenous batch reactor where the charge is allowed to auto-ignite at constant volume vessel under predefined initial temperature and pressure. The simulations cover pressures of 10-60 bar, temperatures of 60 0 K-90 0 K, and fuel to air ratio from stoichiometry (equivalence ratio) of 0.3-1.0. Tangential stretching rate (TSR) and the computational singular perturba-tion Slow Importance Indices for temperature are used to identify important reactions contributing to the temperature growth rate at critical time instants of the auto-ignition process. Overall, three-stage ig-nition or delayed high temperature heat release is found to be present for most fuels under lean fuel/air mixtures, high pressures, and low temperature conditions. The radical termination reactions of H, OH, and HO2 during the high temperature heat release are leading factors for the distinct separation of heat release stages. (C) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:对于较高的Ther-Modynamic效率的推动器,对稀有的内燃机具有日益增长的兴趣。爆震限制压缩比和稀薄燃烧的比率增加的延伸是促进效率的关键因素。在瘦燃烧条件下,出现了一定的燃料表现出不寻常的热释放特性。据报道,燃料/空气混合物经历三级热释放或延迟高温热释放:从初始低温释放开始,类似于在两个阶段点火中观察到的初始释放,然后是热失控的中间阶段抑制,然后进入相对较慢的燃烧第三阶段。本研究的重点是检查各种燃料排出三级点火或延迟高温热释放的条件。烃类/空气混合物的自动点火在封闭的绝热均匀间歇式反应器中模拟,其中允许在预定义的初始温度和压力下在恒定容器中自动点燃。仿真覆盖10-60巴的压力,温度为60 k-90 k,燃料与0.3-1.0的化学计量(等同比)的空气比率。切向拉伸速率(TSR)和计算奇异的温度慢性重视指数用于识别有助于在自动点火过程的临界时间瞬间进行温度生长速率的重要反应。总体而言,发现三阶段IG-IG /延迟的高温热释放出现在贫燃料/空气混合物,高压和低温条件下大多数燃料。在高温热释放期间H,OH和HO2的自由基终止反应是用于除去热释放阶段的不同分离的主要因素。 (c)2020燃烧研究所。由elsevier Inc.出版的所有权利保留。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号