...
首页> 外文期刊>Combustion and Flame >Impacts of oxidant characteristics on the ignition of n-propanol-air hydrothermal flames in supercritical water
【24h】

Impacts of oxidant characteristics on the ignition of n-propanol-air hydrothermal flames in supercritical water

机译:氧化特性对超临界水中正丙醇 - 空气热火焰点火的影响

获取原文
获取原文并翻译 | 示例

摘要

Hydrothermal flame is produced in an aqueous environment beyond the thermodynamic critical properties of water. It is an interface developed at the contact of oxidant and fuel in supercritical water and depends on the operating parameters. In-situ diffusion-limited hydrothermal flames were generated in a novel supercritical flame reactor designed by the National Aeronautics and Space Administration (NASA) at Glenn Research Center to investigate the impacts of oxidant flow rate and temperature on flame ignition and stabilization. The reactor system comprises of n-propanol as fuel and air as the oxidant. Two-dimensional simulation studies were performed to interpret different thermal events occurring during the process. Temperatures inside the reactor were recorded at different times to determine the onset and propagation of hydrothermal flames. Temperature profiles obtained via simulations were compared with the experimental data at near-critical temperatures (380 degrees C and 20.5 MPa). The study of oxidant flow rate on ignition and temperature profile at near-critical and supercritical conditions (400 degrees C and 22.5 MPa) was conducted by varying the air flow rate ranging from 0.5 to 3 mLis. A flow rate of 1.5 mLis was found to be optimal with the spontaneous ignition of hydrothermal flames. The effect of inertial and buoyant forces on hydrothermal flames was qualitatively explained using the non-dimensional Reynolds and Froude numbers. The ignition delay times of hydrothermal flames for near-critical and supercritical reactor conditions for different flow rates are reported. Ignition mechanism and impact of the oxidant characteristics during supercritical water oxidation were inferred using a two-dimensional simulation model for n-propanol-air. (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:水热火焰在除水的热力学关键特性之外的水性环境中产生。它是在超临界水中氧化剂和燃料的接触处开发的界面,并取决于操作参数。原位扩散有限的水热火焰在由全国航空和太空管理局(NASA)设计的新型超临界火焰反应器中,以研究氧化剂流速和温度对火焰点火和稳定性的影响。反应器系统包含N-丙醇作为燃料和空气作为氧化剂。进行二维模拟研究以解释过程中发生的不同热事件。在不同时间记录反应器内的温度以确定水热火焰的发作和繁殖。将通过模拟获得的温度分布与近临界温度(380℃和20.5MPa)的实验数据进行比较。通过改变0.5至3微升的空气流速,对近临界和超临界条件(400℃和22.5MPa)进行点火和超临界条件(400℃和22.5MPa)的氧化剂流速的研究。发现1.5毫升的流速随着水热火焰的自发点火而最佳。使用非维雷诺和弗劳德数来定性解释惯性和浮力对水热火焰的影响。报道了用于近乎关键的近乎临界和超临界反应器条件的水热火焰的点火延迟时间。使用二维仿真模型推断出超临界水氧化期间的氧化机理和氧化剂特性的影响。 (c)2019燃烧研究所。由elsevier Inc.出版的所有权利保留。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号