...
首页> 外文期刊>Combustion and Flame >Effects of turbulent flow regime on perforated plate stabilized piloted lean premixed flames
【24h】

Effects of turbulent flow regime on perforated plate stabilized piloted lean premixed flames

机译:湍流状态对带孔板稳定的引燃稀薄预混火焰的影响

获取原文
获取原文并翻译 | 示例
           

摘要

An experimental study of the effects of turbulent flow regime on the flame structure is conducted by using perforated-plate-stabilized, hydrogen-piloted, lean premixed methane/air turbulent flames. The underlying turbulent flow field was investigated using two-dimensional three-component particle imaging velocimetry (2D3C-PIV) with two perforated plates of different blockage ratios. The flow data allowed a separation of the turbulent flow regime into axial velocity stream dominated and vortex dominated flows. A plate with 62% blockage ratio was used to establish the stream-dominated flow regime and another with 86% blockage ratio was used to establish the vortex-dominated flow regime. OH laser-induced fluorescence was used to study the effects of the turbulent flow regime on the mean progress variable, flame brush thickness, flame surface density, and global consumption speed. In comparison with the streamd-ominated flow, the vortex-dominated flow makes a wider and shorter flame. Also, the vortex-dominated flow has a thicker horizontal flame brush and a thinner longitudinal flame brush. Especially, the spatial variation of the horizontal flame brush thickness for the vortex-dominated flow does not follow the turbulent diffusion theory. The vortex-dominated flow shows a relatively constant flame surface density and the stream-dominated flow shows a decreasing flame surface density along the streamwise direction. The flame surface density for the vortex-dominated flow is higher than the one for the stream-dominated flow. Lastly, the vortex-dominated turbulent flow shows a much higher consumption speed in comparison with that of the stream-dominated turbulent flow with identical velocity fluctuation levels. (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:通过使用多孔板稳定的氢引导稀稀甲烷/空气湍流火焰,对湍流状态对火焰结构的影响进行了实验研究。使用二维三组分粒子成像测速仪(2D3C-PIV),研究了两个阻塞率不同的多孔板,研究了湍流流场。流动数据允许将湍流状态分离为轴向速度流为主和涡流为主的流。使用阻塞率为62%的平板建立以流为主的流动状态,使用阻塞率为86%的另一板建立以涡流为主的流动状态。使用OH激光诱导的荧光来研究湍流状态对平均进程变量,火焰刷厚度,火焰表面密度和整体消耗速度的影响。与以流为主的流相比,以涡流为主的流产生的火焰更宽,更短。而且,涡旋为主的流具有较厚的水平火焰刷和较薄的纵向火焰刷。特别是,对于涡流占主导的流动,水平火焰刷厚度的空间变化不遵循湍流扩散理论。涡流占优势的流显示出相对恒定的火焰表面密度,而流占优势的流显示出沿流向减小的火焰表面密度。涡流主导流的火焰表面密度高于流主导流的火焰表面密度。最后,与具有相同速度波动水平的以流为主的湍流相比,以涡流为主的湍流具有更高的消耗速度。 (C)2019燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号