首页> 外文期刊>Combustion and Flame >Redox kinetics of nickel oxide foils: Structural evolution and rate-limiting steps
【24h】

Redox kinetics of nickel oxide foils: Structural evolution and rate-limiting steps

机译:氧化镍箔的氧化还原动力学:结构演变和限速步骤

获取原文
获取原文并翻译 | 示例
       

摘要

We examine the redox activity of nickelickel oxide foils. Thin nickel foils (2.5 gm, 10 m, and 100 pm) were subjected to redox conditions in a fixed-bed reactor within 800-1000 degrees C, and samples were examined using SEM at different stages of conversion. We identify some key features or the process that are used to guide model development: (1) Oxidation starts with the nucleation of oxide grains, followed by their rapid growth leading to overlap and the attenuation of fast diffusion pathways. (2) Reduction is impacted by the evolution of macro-pores which facilitate gas-oxide contact, and dense metallic clusters that shield the reactants. (3) The transitions between stages during conversion and the characteristics of grains, pores and clusters depend on the sample thickness. Guided by these observations, analytical models are formulated. Oxidation is modeled as a nucleation nucleation-growth process while reduction is characterized by an adsorption-surface reaction process. We extract the corresponding reaction parameters by training the model using the measurements and show that the model formulation captures the controlling mechanisms of the conversion. The oxidation rate is controlled by the rapid decay of oxygen transport across the products layer, and the dependency of the oxides grain structure on the sample thickness contributes to the rate of decay. The reduction rate is largely controlled by the accessibility of lattice oxygen to surface kinetics, and mostly by slow ionic diffusion. While using different foil thicknesses is useful in extracting the kinetics, if used in rapid redox processes applicable to chemical-looping applications, oxygen carriers (foils or other forms) with characteristic active metal thickness of 1 pm are recommended. (C) 2019 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:我们检查了镍/氧化镍箔的氧化还原活性。薄镍箔(2.5 gm,10 m和100 pm)在800-1000摄氏度的固定床反应器中经受氧化还原条件,并在不同转换阶段使用SEM检查样品。我们确定了一些可用于指导模型开发的关键特征或过程:(1)氧化始于氧化物颗粒的形核,然后是它们的快速生长,导致重叠和快速扩散路径的衰减。 (2)还原受到促进气态氧化物接触的大孔的发展以及屏蔽反应物的致密金属簇的影响。 (3)转换期间各阶段之间的过渡以及晶粒,孔洞和团簇的特征取决于样品厚度。在这些观察的指导下,制定了分析模型。氧化被建模为成核成核生长过程,而还原则以吸附表面反应过程为特征。我们通过使用测量值训练模型来提取相应的反应参数,并表明该模型公式描述了转化的控制机制。氧化速率受氧在整个产品层中的快速迁移所控制,而氧化物晶粒结构对样品厚度的依赖性有助于衰减速率。还原速率主要受晶格氧对表面动力学的可及性控制,并且主要由缓慢的离子扩散控制。尽管使用不同的箔厚度可用于提取动力学,但如果将其用于适用于化学循环应用的快速氧化还原工艺中,则建议使用特征活性金属厚度为1 pm的氧气载体(箔或其他形式)。 (C)2019燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号