...
首页> 外文期刊>Combustion and Flame >Insights into engine autoignition: Combining engine thermodynamic trajectory and fuel ignition delay iso-contour
【24h】

Insights into engine autoignition: Combining engine thermodynamic trajectory and fuel ignition delay iso-contour

机译:发动机自动点火的见解:结合发动机热力学轨迹和燃油点火延迟等高线

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

One of the ultimate goals of chemical kinetic study is to understand and predict autoignition in engines. In this study, utilizing toluene primary reference fuels (TPRF) as a gasoline surrogate and a recently developed multicomponent gasoline kinetic mechanism, we have demonstrated a general approach to analyze autoignition in arbitrary spark-ignition (SI) and advanced compression ignition (ACI) engine conditions by combining thermodynamic pressure-temperature trajectory and the fuel ignition delay iso-contours. This method allows direct evaluation of controlling chemistry, potential involvement of low temperature heat release, and the dependence of autoignition to conventional fuel metrics (research and motor octane rating, i.e., RON and MON, and octane sensitivity OS=RON-MON) and engine operating conditions such as equivalence ratio, exhaust gas recirculation (EGR) ratio and engine intake conditions. Applying the analysis to the pressure-temperature trajectories of the conventional RON and MON tests, as well as those beyond RON and beyond MON, distinct roles of conventional gasoline fuel metrics and engine operating parameters are identified for all representative engine conditions. By comparing the autoignition behavior in ACI and SI engine conditions, the knowledge obtained from SI engine knock cannot be directly transferred to ACI bulk combustion phasing control in general, due to the different mixture equivalence ratios and the associated differences in reactivity and its dependence. This method could be extended to generate an auto-ignition map for arbitrary fuels and arbitrary engine trajectories, and the useful insights and overall evaluations can be used to complement conventional kinetic simulation of engine cycles. (C) 2018 The Authors. Published by Elsevier Inc. on behalf of The Combustion Institute. This is an open access article under the CC BY-NC-ND license.
机译:化学动力学研究的最终目标之一是了解和预测发动机的自燃。在这项研究中,利用甲苯主要参考燃料(TPRF)作为汽油替代物和最近开发的多组分汽油动力​​学机制,我们展示了一种用于分析任意火花点火(SI)和先进压缩点火(ACI)发动机中自燃的通用方法通过结合热力学压力-温度轨迹和燃料点火延迟等值线来确定工况。这种方法可以直接评估控制化学成分,潜在的低温热释放以及自动点火对常规燃料指标(研究和发动机辛烷值,即RON和MON,辛烷值灵敏度OS = RON-MON)的依赖性。运转条件,例如当量比,废气再循环(EGR)比例和发动机进气条件。将分析应用于常规RON和MON测试以及RON和MON之外的压力-温度轨迹,可以确定所有代表性发动机工况的常规汽油燃料指标和发动机工作参数的不同作用。通过比较ACI和SI发动机工况下的自燃行为,由于混合当量比不同以及相关的反应性及其依赖性,通常无法将从SI发动机爆震获得的知识直接转移到ACI大块燃烧定相控制中。该方法可以扩展为针对任意燃料和任意发动机轨迹生成自动点火图,并且有用的见识和整体评估可用于补充发动机循环的常规动力学模拟。 (C)2018作者。由Elsevier Inc.代表燃烧研究所出版。这是CC BY-NC-ND许可下的开放获取文章。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号