...
首页> 外文期刊>Combustion and Flame >Direct numerical simulation of a high Ka CH_4/air stratified premixed jet flame
【24h】

Direct numerical simulation of a high Ka CH_4/air stratified premixed jet flame

机译:高Ka_CH_4 /空气分层预混喷射火焰的直接数值模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Direct numerical simulation (DNS) of a high Karlovitz number (Ka) CH4/air stratified premixed jet flame was performed and used to provide insights into fundamentals of turbulent stratified premixed flames and their modelling implications. The flame exhibits significant stratification where the central jet has an equivalence ratio of 0.4, which is surrounded by a pilot flame with an equivalence ratio of 0.9. A reduced chemical mechanism for CH4/air combustion based on GRI-Mech3.0 was used, including 268 elementary reactions and 28 transported species. Over five billion grid points were employed to adequately resolve the turbulence and flame scales. The maximum Ka of the flame in the domain approaches 1400, while the jet Damkohler number (Da(jet)) is as low as 0.0027. The flame shows early stages of CH4/air combustion in the near field and later stages in the far field; the separation of combustion stages can be largely attributed to the small jet flow timescale and the low Dajet. The gradient of equivalence ratio in the flame normal direction, d phi/dn, is predominantly negative, and small-scale stratification was found to play an important role in determining the local flame structure. Notably, the flame is thinner, the burning is more intense, and the levels of the radical pools, including OH, O and H, are higher in regions with stronger mixture stratification. The local flame structure is more strained and less curved in these regions. The mean flame structure is considerably influenced by the strong shear, which can be reasonably predicted by unity Lewis number stratified premixed flamelets when the thermochemical conditions of the reactant and product are taken locally from the DNS and the strain rates close to those induced by the mean flow are used in the flamelet calculation. An enhanced secondary reaction zone behind the primary reaction zone was observed in the downstream region, where the temperature is high and the fuel concentration is negligible, consistent with the observed separation of combustion stages. The main reactions involved in the secondary reaction zone, including CO + OH double left right arrow CO2 + H (R94), H + O-2 + M double left right arrow HO2 + M (R31), HO2 + OH double left right arrow H2O + O-2 (R82) and H-2 + OH double left right arrow H2O + H (R79), are related to accumulated intermediate species including CO, H-2, H, and OH. The detailed mechanism of intermediate species accumulation was explored and its effect on chemical pathways and heat release rate was highlighted. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:进行了高卡洛维兹数(Ka)CH4 /空气分层预混喷射火焰的直接数值模拟(DNS),并用于提供湍流分层预混火焰的基本原理及其建模含义的见解。在中央射流的当量比为0.4的情况下,火焰表现出明显的分层,该火焰被等当量比为0.9的引燃火焰包围。使用了基于GRI-Mech3.0的减少CH4 /空气燃烧的化学机理,包括268个基本反应和28种运输的物质。运用了超过50亿个网格点来充分解决湍流和火焰垢。区域中火焰的最大Ka接近1400,而射流Damkohler数(Da(jet))低至0.0027。火焰在近场显示出CH4 /空气燃烧的早期阶段,而在远场显示出后期阶段。燃烧阶段的分离在很大程度上归因于小射流时间尺度和低Dajet。火焰法线方向上的当量比梯度d phi / dn主要为负,发现小规模分层在确定局部火焰结构中起着重要作用。值得注意的是,在混合物分层更强的区域中,火焰更薄,燃烧更剧烈,并且包括OH,O和H在内的自由基池的水平更高。在这些区域中,局部火焰结构更易变形,弯曲更少。平均火焰结构在很大程度上受到强剪切力的影响,当反应物和产物的热化学条件从DNS局部获取且应变率接近于均值引起的应变率时,可以通过统一的Lewis数分层预混小火焰来合理地预测强火焰。流量用于小火焰计算。在下游区域观察到一级反应区域后面的二级反应区域得到增强,该区域温度较高且燃料浓度可忽略不计,这与观察到的燃烧阶段分离是一致的。二级反应区中涉及的主要反应包括CO + OH双左向右箭头CO2 + H(R94),H + O-2 + M双左向右箭头HO2 + M(R31),HO2 + OH双左向右箭头H2O + O-2(R82)和H-2 + OH向左向右箭头H2O + H(R79)与累积的中间物种有关,包括CO,H-2,H和OH。探索了中间物种积累的详细机理,并突出了其对化学途径和放热速率的影响。 (C)2018年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号