首页> 外文期刊>Combustion and Flame >Data consistency of the burning velocity measurements using the heat flux method: Hydrogen flames
【24h】

Data consistency of the burning velocity measurements using the heat flux method: Hydrogen flames

机译:使用热通量法测量燃烧速度的数据一致性:氢火焰

获取原文
获取原文并翻译 | 示例
       

摘要

Consistent datasets of experiments are highly important both for validation and optimization of kinetic mechanisms. An analysis of the data consistency of all available burning velocity measurements of hydrogen flames using the heat flux method at atmospheric pressure is performed in the present work. A comparison of many experiments performed in several laboratories with different types of dilution by various inerts was guided by kinetic modeling using two kinetic mechanisms. Konnov (2015) and ELTE (Varga et al., 2016) models demonstrated a uniform trend at all conditions tested: the second mechanism predicts lower burning velocities which are in better agreement with the heat flux measurements from different groups. Some experimental datasets, however, significantly disagree with one or both models; these conditions were revisited experimentally in the present work. The laminar burning velocities of H-2 + O-2 + N-2 mixtures with 7.7% O-2 in O-2 + N-2 oxidizer and of 85:15 (H-2+ N-2) and 25:75 (H-2+ N-2) fuel mixtures with 12.5:87.5 (O-2 + He) oxidizer have been measured. It was concluded that the results of Hermanns et al. (2007) are somewhat higher than those of other studies at similar conditions and a possible reason of this disagreement was suggested. Analysis of the measurements performed by Goswami et al. (2015) on a high-pressure installation suggests an equipment malfunction that led to the erroneous values of the equivalence ratio for hydrogen and syngas flames. The ELTE mechanism developed using an optimization approach shows a very good performance in predicting laminar burning velocities of hydrogen flames measured using the heat flux method. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:一致的实验数据集对于验证和优化动力学机制都非常重要。在当前工作中,使用大气压下的热通量方法,对氢火焰的所有可用燃烧速度测量的数据一致性进行了分析。通过使用两种动力学机理的动力学建模,对在几个实验室中用各种惰性气体进行不同类型稀释的许多实验进行了比较。 Konnov(2015)和ELTE(Varga et al。,2016)模型在所有测试条件下均显示出一致的趋势:第二种机制预测较低的燃烧速度,这与不同组的热通量测量结果更为吻合。但是,一些实验数据集与一个或两个模型存在很大差异。这些条件在本工作中已通过实验重新审视。 H-2 + O-2 + N-2混合物的层流燃烧速度,在O-2 + N-2氧化剂中为7.7%O-2,层流燃烧速度为85:15(H-2 + N-2)和25:75已测量了具有12.5:87.5(O-2 + He)氧化剂的(H-2 + N-2)燃料混合物。得出结论,赫尔曼斯等人的结果。 (2007年)比在类似条件下的其他研究略高,有人建议这种分歧的可能原因。 Goswami等人进行的测量分析。 (2015年)关于高压装置的研究表明设备故障,导致氢气和合成气火焰的当量比值错误。使用优化方法开发的ELTE机制在预测使用热通量法测量的氢火焰的层流燃烧速度方面显示出非常好的性能。 (C)2018年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号