首页> 外文期刊>Combustion and Flame >Kinetic modeling for unimolecular β-scission of the methoxymethyl radical from quantum chemical and RRKM analyses
【24h】

Kinetic modeling for unimolecular β-scission of the methoxymethyl radical from quantum chemical and RRKM analyses

机译:动力学化学和RRKM分析的甲氧基甲基自由基单分子β-断裂动力学模型

获取原文
获取原文并翻译 | 示例
           

摘要

Unimolecular beta-scission of the methoxymethyl (CH3OCH2) radical has been considered to be the crucial chain-propagating step in both oxidation and pyrolysis of dimethyl ether. The present work employs hybrid density functionals M06-2X, BB1K, B3LYP, and MPW1K with the MG3S basis set as well as double-hybrid density functional B2PLYP and Moller-Plesset perturbation theory MP2 with the TZVP basis set to study the detailed mechanism of unimolecular decomposition of CH3OCH2. Energies of all stationary points are refined with the CCSD(T), QCISD(T), CBS-QB3, and G4 calculations. The minimum energy path was computed at the CCSD(T)/aug-cc-PVTZ//M062X/MG3S level. Kinetic calculations are performed by means of high-pressure multi-structural canonical variational transition state (MS-CVT) theory and pressure-dependent Rice-Ramsperger-Kassel-Marcus (RRKM) theory to clarify the available experimental observations and previous theoretical results. A kinetic model for the low and the high-pressure limiting, and falloff region was extracted. For high pressure limit, k(infinity) = 2.08 x 10(12) (T/300)(1.002) exp(-11097.64/T) s(-1) at temperatures of 200-2600K based on the MS-CVT/SCT method. Furthermore, the intermediate falloff curve was found to be best represented by k/k(infinity) = [x/(1 + x)]F-cent(1/[1+(a+logx)2/(N +/-Delta N)2]) with x = k(0)/k(infinity), a = 0.263, N = 1.208, Delta N = 0.096, (+Delta N for (a + logx) 0 and -Delta N for (a + logx) 0), and F-cent(DME) = 0.348 independent of temperature. The low and high pressure limiting rate constants have been extracted by extrapolation of the fall-off curves: k(0) = [DME] 2.49 x 10(16) (T/300)(0.053) exp(-9067.58/T) cm(3) mol(-1) s(-1) and k(infinity) = 1.88 x 10(12) (T/300)(1.05) exp(-11061.79/T) s(-1) at temperatures of 450-800 K, which agree well with the reported experimental low and high pressure limit results. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:甲氧基甲基(CH3OCH2)基团的单分子β断裂被认为是二甲醚氧化和热解过程中至关重要的链增长步骤。本研究采用具有MG3S基础的混合密度泛函M06-2X,BB1K,B3LYP和MPW1K,以及具有TZVP基础的双混合密度泛函B2PLYP和Moller-Plesset微扰理论MP2来研究单分子的详细机理CH3OCH2分解。通过CCSD(T),QCISD(T),CBS-QB3和G4计算精炼所有固定点的能量。最小能量路径是在CCSD(T)/ aug-cc-PVTZ // M062X / MG3S级别上计算的。动力学计算是通过高压多结构规范变化过渡态(MS-CVT)理论和压力相关莱斯-拉姆斯珀格-卡塞尔-马库斯(RRKM)理论进行的,以阐明可用的实验观察结果和先前的理论结果。提取了低压和高压极限以及衰减区域的动力学模型。对于高压极限,基于MS-CVT / SCT,在200-2600K的温度下k(无穷大)= 2.08 x 10(12)(T / 300)(1.002)exp(-11097.64 / T)s(-1)方法。此外,发现中间衰减曲线最好用k / k(无穷大)= [x /(1 + x)] F-cent(1 / [1+(a + logx)2 /(N +/-) Delta N)2]),其中x = k(0)/ k(无穷大),a = 0.263,N = 1.208,Delta N = 0.096,((a + logx)<0的+ Delta N和(( a + logx)> 0),并且F-cent(DME)= 0.348,与温度无关。通过衰减曲线的外推法提取了低压和高压极限速率常数:k(0)= [DME] 2.49 x 10(16)(T / 300)(0.053)exp(-9067.58 / T)cm (3)mol(-1)s(-1)和k(无穷大)= 1.88 x 10(12)(T / 300)(1.05)exp(-11061.79 / T)s(-1)在450- 800 K,与报道的实验低压和高压极限结果非常吻合。 (C)2018年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

  • 来源
    《Combustion and Flame》 |2018年第11期|243-253|共11页
  • 作者单位

    Northwest Univ, Sch Chem Engn, Xian 710069, Shaanxi, Peoples R China;

    Northwest Univ, Sch Chem Engn, Xian 710069, Shaanxi, Peoples R China;

    Northwest Univ, Sch Chem Engn, Xian 710069, Shaanxi, Peoples R China;

    Northwest Univ, Sch Chem Engn, Xian 710069, Shaanxi, Peoples R China;

    Northwest Univ, Sch Chem Engn, Xian 710069, Shaanxi, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    beta-scission; Methoxymethyl radical; RRKM; Kinetic model;

    机译:β-断裂;甲氧甲基自由基;RRKM;动力学模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号