首页> 外文期刊>Combustion and Flame >Premixed flame stability and transition to detonation in a supersonic combustor
【24h】

Premixed flame stability and transition to detonation in a supersonic combustor

机译:超音速燃烧室中的预混火焰稳定性和爆轰过渡

获取原文
获取原文并翻译 | 示例
       

摘要

Simulations of a supersonic, reacting, premixed flow in a channel were performed to investigate the effect of flow speed on ignition, flame stability, and transition to detonation. The configuration studied was a rectangular channel with a supersonic inflow of stoichiometric ethylene-oxygen, a transmissive outflow boundary, and no-slip adiabatic walls. The compressible reactive Navier-Stokes equations were solved by a high-order numerical algorithm on an adapting mesh for inflow Mach numbers, M-infinity, of 3 to 10. For M-infinity = 3, the fuel-oxidizer mixture does not reach a sufficient temperature for autoignition. Boundary layers that form on the top and bottom walls deflect the incoming flow, resulting in the formation of an oblique shock train. For M-infinity = 5, the fuel-oxidizer mixture ignites in the boundary layers and the flame front expands into the channel. The flame front becomes unstable and turbulent with time due to a Rayleigh-Taylor (RT) instability at the interface between the low-density burned gas and high-density unburned gas. Detonation is initiated in several locations at the flame front and in the unburned gas through an energy-focusing mechanism. As M-infinity increases, the time scales for growth of the RT instability at the flame front and eventual detonation increase significantly. Despite the difference in time scales, the flame evolution process is qualitatively independent of M-infinity: ignition in the boundary layer, laminar flame expansion, growth of an RT instability at the flame front, turbulent flame expansion, and deflagration-to-detonation transition. Published by Elsevier Inc. on behalf of The Combustion Institute.
机译:对通道中的超音速,反应性,预混流进行了模拟,以研究流速对点火,火焰稳定性和爆轰过渡的影响。研究的结构是一个矩形通道,具有超音速化学计量的乙烯-氧气流入,透射式流出边界和绝热绝热壁。可压缩的反应性Navier-Stokes方程由高阶数值算法在自适应网格上求解,其输入Mach数M-无穷大为3至10。对于M-无穷大= 3,燃料-氧化剂混合物未达到足够的温度进行自燃。在顶壁和底壁上形成的边界层使进入的流体偏转,从而形成倾斜的冲击波。当M-infinity> = 5时,燃料-氧化剂混合物在边界层中点燃,并且火焰前沿扩展到通道中。由于在低密度燃烧气体与高密度未燃烧气体之间的界面处的瑞利-泰勒(RT)不稳定性,火焰前沿随时间而变得不稳定和湍流。通过能量聚焦机制,在火焰前部和未燃烧气体中的多个位置引发爆炸。随着M-infinity的增加,火焰前缘RT不稳定性增长的时标和最终爆炸的时间会显着增加。尽管时间尺度有所不同,但火焰的演化过程在质量上与M-无穷大无关:边界层着火,层流火焰膨胀,火焰前缘RT不稳定性的增长,湍流火焰膨胀以及爆燃-引爆过渡。由Elsevier Inc.代表燃烧研究所出版。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号