首页> 外文期刊>Combustion and Flame >Assessment of differential diffusion effects in flamelet modeling of oxy-fuel flames
【24h】

Assessment of differential diffusion effects in flamelet modeling of oxy-fuel flames

机译:氧燃料火焰小火焰建模中微分扩散效应的评估

获取原文
获取原文并翻译 | 示例
       

摘要

The modeling of differential diffusion in flamelet-based approaches is analyzed in a turbulent non-premixed oxy-fuel flame experimentally investigated by Sevault et al. (2012). The flamelet models considered are the unity Lewis number flamelet (ULNF) model proposed by Peters (1986), the variable Lewis number flamelet (VLNF) model presented by Pitsch and Peters (1998) and a recently proposed model where the influence of turbulence on variable Lewis numbers is incorporated (NLVLNF, Wang, 2016). The suitability of the different manifold-based approaches is studied by means of a prior analysis based on the experimentally data derived from Raman/Rayleigh measurement and a fully coupled Large-Eddy Simulation (LES). In both cases, the Bilger mixture fraction and the progress variable are chosen as the flamelet parameters in order to be consistent with the experiments. The prior analysis confirms the presence of strong differential diffusion effects in the reaction zone and near the fuel nozzle, which decrease towards the fuel-rich flame zone and further downstream. In general, the NLVLNF model yields an improvement in the representation of the flame structure compared to the ULNF and VLNF models and this model is able to capture the transition to the unity Lewis number behavior. However, discrepancies in predicting all species and the temperature profiles still remain. These results are further quantified through the use of the Wasserstein metric, which has recently been introduced as a diagnostic tool for combustion model validation. In the LES, all major species are transported for the calculation of the Bilger mixture fraction. The tabulated major species mass fractions reveal contradicting findings compared to the prior analysis. The transported species are in better agreement with the experimental data than the tabulated ones, which is attributed to the direct consideration of turbulent and molecular transport. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:在Sevault等人实验研究的湍流非预混合氧燃料火焰中分析了基于小火焰的方法中的差分扩散模型。 (2012)。考虑的小火焰模型是由Peters(1986)提出的统一路易斯数小火焰(ULNF)模型,由Pitsch and Peters(1998)提出的可变刘易数小火焰(VLNF)模型以及最近提出的湍流对变量影响的模型。合并了Lewis数(NLVLNF,Wang,2016)。通过基于拉曼/瑞利测量和完全耦合的大涡模拟(LES)的实验数据的先验分析,研究了基于歧管的不同方法的适用性。在这两种情况下,都将Bilger混合物分数和进行量变量选择为小火焰参数,以便与实验保持一致。先前的分析证实了在反应区和燃料喷嘴附近存在强烈的微分扩散效应,该效应向着富燃料火焰区和更下游逐渐减小。通常,与ULNF和VLNF模型相比,NLVLNF模型在火焰结构表示上有所改进,并且该模型能够捕获向统一Lewis数行为的过渡。但是,预测所有物种和温度曲线的差异仍然存在。通过使用Wasserstein度量进一步量化这些结果,该度量最近已被引入作为燃烧模型验证的诊断工具。在LES中,所有主要种类均被运输以计算Bilger混合比。与先前分析相比,列表中的主要物种质量分数揭示了矛盾的发现。所运输的物种与实验数据相比,与列表数据具有更好的一致性,这归因于湍流和分子运输的直接考虑。 (C)2018年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

  • 来源
    《Combustion and Flame》 |2018年第11期|134-144|共11页
  • 作者单位

    Tech Univ Darmstadt, Inst Simulat React Thermofluid Syst, D-64287 Darmstadt, Germany;

    TU Bergakad Freiberg, Numer Thermofluid Dynam, D-09599 Freiberg, Germany;

    Tech Univ Darmstadt, Inst Simulat React Thermofluid Syst, D-64287 Darmstadt, Germany;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA;

    Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA|Stanford Univ, Ctr Turbulence Res, Stanford, CA 94305 USA;

    Tech Univ Darmstadt, Inst Simulat React Thermofluid Syst, D-64287 Darmstadt, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Oxy-fuel flames; Differential diffusion; Flamelet model; LES-FPV;

    机译:含氧燃料火焰;微分扩散;火焰模型;LES-FPV;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号