首页> 外文期刊>Combustion and Flame >Experimental and chemical kinetic modeling investigation of methyl butanoate as a component of biodiesel surrogate
【24h】

Experimental and chemical kinetic modeling investigation of methyl butanoate as a component of biodiesel surrogate

机译:丁酸甲酯作为生物柴油替代物成分的实验和化学动力学建模研究

获取原文
获取原文并翻译 | 示例
       

摘要

Biodiesel is a potential alternative to fossil diesel. In combustion simulations, in order to circumvent the difficulty in integrating reaction schemes for biodiesels, which are typically of a large size and not well understood, a surrogate approach to simplify the representation of its long chain methyl ester components is adopted. In this work, a compact reaction scheme for methyl butanoate, which is a potentially important candidate for biodiesel surrogates, is derived from a detailed reference mechanism (Dooley et al., 2008). An existing well-validated model for n-dodecane (Narayanaswamy et al., 2014) oxidation, which is a suitable base to model biodiesel surrogates, is augmented with the oxidation pathways of methyl butanoate. The resulting combined mechanism is comprehensively assessed for methyl butanoate kinetic description. Several rate constants pertaining to methyl butanoate kinetics are updated in the resulting chemical mechanism based on recent rate recommendations from the literature in a consistent manner. The revised kinetic model has been validated comprehensively against a wide range of experimental data and found to be satisfactory. In addition, auto-ignition delay times of methyl butanoate have been measured in a rapid compression machine (RCM). The ignition delay time measurements cover a wide range of experimental conditions: temperatures of 850-1100 K and pressures of 10-40 bar. The impact of varying equivalence ratios on ignition delay times has also been investigated for phi = 0.5-1.5 and ignition delay times are reported for the rich mixtures for the first time as a part of this work. No two stage ignition or negative temperature coefficient (NTC) behavior has been observed for methyl butanoate in the experimental investigation. The effect of addition of low-temperature chemistry pathways to the methyl butanoate chemical kinetic mechanism has also been explored. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:生物柴油是化石柴油的潜在替代品。在燃烧模拟中,为了避免集成生物柴油的反应方案的困难,生物燃料的反应方案通常尺寸较大且尚不为人所知,因此采用了替代方法来简化其长链甲基酯成分的表示。在这项工作中,从详细的参考机制中得出了紧凑的丁酸甲酯反应方案,这是生物柴油替代物的潜在重要候选物(Dooley等,2008)。现有的经过充分验证的正十二烷氧化模型(Narayanaswamy等人,2014)是建立生物柴油替代物模型的合适基础,并增加了丁酸甲酯的氧化途径。对于丁酸甲酯的动力学描述,综合评估了所得的组合机理。根据文献中最近的速率推荐,以一致的方式在最终的化学机理中更新了有关丁酸甲酯动力学的几个速率常数。修改后的动力学模型已经针对广泛的实验数据进行了全面验证,并被认为是令人满意的。此外,已在快速压缩机(RCM)中测量了丁酸甲酯的自动点火延迟时间。点火延迟时间的测量涵盖了广泛的实验条件:温度为850-1100 K,压力为10-40 bar。还研究了当量比变化对phi = 0.5-1.5的点火延迟时间的影响,并且首次报告了浓混合气的点火延迟时间,这是这项工作的一部分。在实验研究中,未观察到丁酸甲酯的两级点火或负温度系数(NTC)行为。还研究了将低温化学途径添加到丁酸甲酯化学动力学机理中的作用。 (C)2018年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号