首页> 外文期刊>Cold regions science and technology >Some factors affecting supercooling and the equilibrium freezing point in soil-water systems
【24h】

Some factors affecting supercooling and the equilibrium freezing point in soil-water systems

机译:影响土壤-水系统中过冷和平衡凝固点的一些因素

获取原文
获取原文并翻译 | 示例
           

摘要

For six monomineral, homoionic clayey soils, the temperature of spontaneous nucleation T_(sn) and the equilibrium freezing point T_f were determined by use of the Differential Scanning Calorimetry (DSC) technique. The temperature of spontaneous nucleation T_(sn) was determined on the cooling run, as the initial temperature of the observed exothermic peak. The temperature of equilibrium freezing (or melting) T_f was interpreted as the initial temperature of the last non-zero thermal impulse in the diagram of real thermal impulses distribution q(T) obtained on warming. The supercooling ψ was calculated as the difference between T_f and T_(sn). The obtained results testify the strong dependency of the equilibrium freezing point T_f on the water content w. It has been proved that T_f can be expressed as a power function of the water content w and the plasticity limit W_p, with an asymptote at w equal to the unfreezable water content w_(nf). In contrary, a scatter of results was observed for T_(sn) and ψ. which could be related to the effect of factors other than the water content. The best fitted model expresses the temperature of non-equilibrium freezing T_(sn) as a function of the water content w, the plastic limit w_P and an extensive parameter of the sample, i.e. its mass m, the effect of which proved fully statistically significant. The results give evidence of the strong effect of both soil plasticity and the sample mass on the temperature of spontaneous nucleation and the supercooling. By use of auxiliary empirical function, relating the unfreezable water content w_(nf) to the plastic limit W_p, it was possible to calculate such a mass m_(ψ = 0) of a soil sample, for which the supercooling equals zero. At high water contents the predicted supercooling tends to zero for very large sample masses, from about 10~5 kg in a practically uncohesive soil (w_P= 1%) to 10~8 kg in an extremely cohesive soil (w_P= 100%).
机译:对于六种单矿物,同质黏土,利用差示扫描量热法(DSC)确定了自发成核温度T_(sn)和平衡凝固点T_f。在冷却过程中确定自发成核温度T_(sn),作为观察到的放热峰的初始温度。在升温时获得的实际热脉冲分布q(T)的图中,平衡冻结(或融化)温度T_f被解释为最后一个非零热脉冲的初始温度。过冷cool被计算为T_f和T_(sn)之差。所得结果证明了平衡凝固点T_f对水含量w的强烈依赖性。已经证明,T_f可以表示为水含量w和可塑性极限W_p的幂函数,且渐近线处的w等于不可冻结的水含量w_(nf)。相反,对于T_(sn)和ψ观察到结果分散。这可能与含水量以外的其他因素的影响有关。最佳拟合模型将非平衡冻结温度T_(sn)表示为水含量w,可塑性极限w_P和样品的广泛参数(即质量m)的函数,事实证明,其影响在统计学上十分显着。结果证明了土壤可塑性和样品质量对自发成核温度和过冷度的强烈影响。通过使用辅助经验函数,将不可冻结的水含量w_(nf)与塑性极限W_p相关联,可以计算出土壤样品的质量m_(ψ= 0),其中过冷量等于零。在高含水量下,对于非常大的样品质量,预测的过冷度趋于零,从实际上不具有粘性的土壤(w_P = 1%)中的约10〜5 kg到具有高度粘性的土壤(w_P = 100%)中的10〜8 kg。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号