...
首页> 外文期刊>Cognitive Systems Research >Traction-energy balancing adaptive control with slip optimization for wheeled robots on rough terrain
【24h】

Traction-energy balancing adaptive control with slip optimization for wheeled robots on rough terrain

机译:崎terrain地形下轮式机器人滑移优化的牵引能平衡自适应控制

获取原文
获取原文并翻译 | 示例
           

摘要

On rough terrain, excessive wheel slippage is easily generated by changes of surface conditions such as soil types and geometries. It induces considerable loss of wheel traction and battery energy. To prevent this, wheeled robots should consistently recognize the current situation generated between wheel and surface. And also wheeled robots are required to optimally control wheel motion in limited wheel traction and battery capacity. Therefore, this paper proposes a novel wheel control algorithm based on slip optimization of traction and energy, which is adaptive to change of surface condition. Proposed wheel control algorithm is called Traction-Energy Balancing Adaptive Control (TEB) in this paper and TEB assigns optimized rotation speed to each wheel by observing wheel slip ratio which is a key parameter of TEB. As functions of TEB, TEB is largely divided into three main parts; (1) slip optimizer (2) slip controller (3) SC-compensator. In the slip optimizer, two optimal slip models were derived as a function of slip ratios regarding maximum traction and tractive efficiency using experimental data about wheel-terrain interaction in three types of soil (grass, gravel and sand). And the optimal slip models were employed in order to determine a desired slip value of wheel with observation of a change in actual robot velocity as control input in the slip controller. For optimal slip control, the proposed slip controller is based on conventional PID controller with compensating disturbance in the controller (SC-compensator) which occurs by change of surface shapes. In the SC-compensator, radial function networks (RBFN) was applied in the slip controller and RBFN was of help to readjust previously set PID gains depending on occurred slip error. Finally, TEB was experimentally verified by controlling a real robot having four wheels on various terrain types. (C) 2018 Published by Elsevier B.V.
机译:在崎terrain的地形上,表面条件(例如土壤类型和几何形状)的变化很容易导致车轮过度打滑。它会导致车轮牵引力和电池能量的大量损失。为避免这种情况,轮式机器人应始终如一地识别出轮与表面之间产生的当前情况。并且还需要轮式机器人,以在有限的车轮牵引力和电池容量下最佳地控制车轮运动。因此,本文提出了一种新的基于牵引力和能量滑动优化的车轮控制算法,该算法可适应路面状况的变化。本文提出的车轮控制算法被称为牵引能量平衡自适应控制(TEB),并且TEB通过观察作为TEB关键参数的车轮滑移率,为每个车轮分配最佳转速。作为TEB的功能,TEB大致分为三个主要部分: (1)滑差优化器(2)滑差控制器(3)SC补偿器。在滑移优化器中,使用关于三种类型的土壤(草,砾石和沙子)中轮-土相互作用的实验数据,得出了关于最大牵引力和牵引效率的滑移率函数的两个最佳滑移模型。并采用最佳滑移模型,以便通过观察实际机器人速度的变化来确定车轮的期望滑移值,作为滑移控制器中的控制输入。为了获得最佳的滑差控制,提出的滑差控制器基于常规的PID控制器,该控制器具有补偿控制器(SC补偿器)中的扰动,该扰动是由表面形状的变化引起的。在SC补偿器中,滑差控制器应用了径向功能网络(RBFN),RBFN有助于根据发生的滑差误差重新调整先前设置的PID增益。最终,通过控制具有不同地形类型的四个轮子的真实机器人,通过实验验证了TEB。 (C)2018由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号