首页> 外文期刊>Coastal engineering >Study of the turbulence in the air-side and water-side boundary layers in experimental laboratory wind induced surface waves
【24h】

Study of the turbulence in the air-side and water-side boundary layers in experimental laboratory wind induced surface waves

机译:实验性实验室风致面波在空气侧和水侧边界层中的湍流研究

获取原文
获取原文并翻译 | 示例
           

摘要

This study detailed the structure of turbulence in the air-side and water-side boundary layers in wind-induced surface waves. Inside the air boundary layer, the kurtosis is always greater than 3 (the value for normal distribution) for both horizontal and vertical velocity fluctuations. The skewness for the horizontal velocity is negative, but the skewness for the vertical velocity is always positive. On the water side, the kurtosis is always greater than 3, and the skewness is slightly negative for the horizontal velocity and slightly positive for the vertical velocity. The statistics of the angle between the instantaneous vertical fluctuation and the instantaneous horizontal velocity in the air is similar to those obtained over solid walls. Measurements in water show a large variance, and the peak is biased towards negative angles. In the quadrant analysis, the contribution of quadrants Q2 and Q4 is dominant on both the air side and the water side. The non-dimensional relative contributions and the concentration match fairly well near the interface. Sweeps in the air side (belonging to quadrant Q4) act directly on the interface and exert pressure fluctuations, which, in addition to the tangential stress and form drag, lead to the growth of the waves. The water drops detached from the crest and accelerated by the wind can play a major role in transferring momentum and in enhancing the turbulence level in the water side.On the air side, the Reynolds stress tensor's principal axes are not collinear with the strain rate tensor, and show an angle α_σ≈ = -20° to-25°. On the water side, the angle is α_σ≈= -40° to - 45°. The ratio between the maximum and the minimum principal stresses is σ_a/σ_b = 3 to 4 on the air side, and aj σ_b = 1.5 to 3 on the water side. In this respect, the air-side flow behaves like a classical boundary layer on a solid wall, while the water-side flow resembles a wake. The frequency of bursting on the water side increases significantly along the flow, which can be attributed to micro-breaking effects - expected to be more frequent at larger fetches.
机译:这项研究详细介绍了风致面波中空气和水侧边界层的湍流结构。在空气边界层内部,对于水平和垂直速度波动,峰度始终大于3(正态分布值)。水平速度的偏度为负,而垂直速度的偏度始终为正。在水方面,峰度始终大于3,并且偏斜度对于水平速度略为负,对于垂直速度略为正。空气中瞬时垂直波动和瞬时水平速度之间的角度统计与在实心壁上获得的统计相似。水中的测量结果显示出很大的差异,并且峰偏向负角。在象限分析中,象限Q2和Q4在空气侧和水侧均占主导地位。无量纲的相对贡献和浓度在界面附近相当匹配。空气侧的扫描(属于象限Q4)直接作用于界面并施加压力波动,除了切向应力和形成阻力外,还会导致波的增长。从波峰脱离并被风加速的水滴在传递动量和增强水侧的湍流水平方面起着重要作用。在空气侧,雷诺应力张量的主轴与应变率张量不共线,并显示一个角度α_σ≈= -20°至-25°。在水侧,角度为α_σ≈= -40°至-45°。最大和最小主应力之比在空气侧为σ_a/σ_b= 3至4,在水侧为ajσ_b= 1.5至3。在这方面,空气侧流动的行为类似于实心壁上的经典边界层,而水侧流动则类似于尾流。在水面上的破裂频率沿着水流显着增加,这可以归因于微破裂效应-预期在较大的取水量时会更频繁。

著录项

  • 来源
    《Coastal engineering》 |2012年第2012期|p.67-81|共15页
  • 作者单位

    Department of Civil Engineering, University of Parma, Parco Area delle Scienze, 181/A, 43100 Parma, Italy,Presently visitor at CUED, University of Cambridge, UK;

    Department of Civil Engineering, University of Parma, Parco Area delle Scienze, 181/A, 43100 Parma, Italy;

    Institute Interuniversitario de Investigaddn del Sistema Tierra en Andalucia, Avda. del Mediterraneo sin, 18006 Granada, Spain;

    Institute Interuniversitario de Investigaddn del Sistema Tierra en Andalucia, Avda. del Mediterraneo sin, 18006 Granada, Spain;

    Engineering Department, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    wind generated waves; turbulence; reynolds principal axes; experiments;

    机译:风浪湍流雷诺主轴;实验;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号