...
首页> 外文期刊>Coastal engineering >The influence of seasonal to interannual nearshore profile variability on extreme water levels: Modeling wave runup on dissipative beaches
【24h】

The influence of seasonal to interannual nearshore profile variability on extreme water levels: Modeling wave runup on dissipative beaches

机译:季节性至年际近岸剖面变化对极端水位的影响:对耗散海滩上的波浪上升进行建模

获取原文
获取原文并翻译 | 示例

摘要

Wave runup, an important contributor to storm-induced extreme water levels, is commonly predicted via empirical formulations that parameterize coastal morphology using simple metrics such as the foreshore beach slope. However, spatially and temporally complex nearshore morphology, such as subtidal sandbars, have the potential to alter surf zone wave dissipation patterns and therefore influence setup, swash, and runup levels observed at the shoreline. In this study, a suite of numerical experiments using XBeach demonstrate reasonable skill in reproducing wave runup observations in dissipative settings, explore the relative influence of seasonal to interannual variability in nearshore morphology on runup and its constitutive components, and illustrate differences between empirical and numerically modeled estimates of runup. The numerical model results show that interannual variability in sandbar configuration, associated with net offshore sandbar migration, has a larger influence on wave runup than does seasonal sandbar variability. Although the particular configuration of sandbars was estimated to influence runup by as much as 0.18 m during storm conditions, natural variability in subaerial beach topography has a stronger influence on runup than subtidal morphology. XBeach demonstrates that both wave setup and infragravity swash have morphologic controls. In experiments simulating storm conditions in which both nearshore and beach morphology was varied, natural interannual variability in beach topography explained about 80% of the variance in runup and its constituents. While XBeach predictions of setup, swash, and runup compare favorably with empirical predictors for low wave conditions, the numerical model predicts higher runup levels for storm-conditions on dissipative beaches raising potential concerns about coastal hazards assessments that use these empirical models to estimate extreme total water levels. (C) 2016 Elsevier B.V. All rights reserved.
机译:通常通过经验公式预测波浪径流,这是风暴引起的极端水位的重要因素,该经验公式使用简单的度量标准(例如前滩坡度)对海岸形态进行参数化。但是,时空复杂的近岸形态(如潮汐下的沙洲)可能会改变冲浪带的波耗散模式,从而影响在海岸线上观测到的起伏,冲刷和上升水平。在这项研究中,使用XBeach进行的一系列数值实验证明了在耗散环境中重现波浪径流观测值的合理技巧,探讨了近岸形态的季节性到年际变化对径流及其本构分量的相对影响,并说明了经验模型和数值模型之间的差异估计的运行时间。数值模型结果表明,与季节性的沙洲变化相比,沙洲构造的年际变化与海上近海沙洲的净迁移有关,对海浪上升的影响更大。尽管据估计,沙洲的特殊构造在暴风雨条件下对径流的影响最大为0.18 m,但与潮下形态相比,空中沙滩地形的自然变化对径流的影响更大。 XBeach证明波设置和次重力斜率都具有形态学控制。在模拟风暴条件的实验中,近岸和海滩形态均发生了变化,海滩地形的自然年际变化解释了地表突变及其成分的大约80%。尽管XBeach的设置,斜流和径流预测与低浪条件的经验预测指标相比具有优势,但数值模型预测的是耗散海滩上风暴条件的较高径流水平,这引发了人们对沿海灾害评估的潜在担忧,这些评估使用这些经验模型来估算极端总灾害量。水位。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Coastal engineering 》 |2016年第9期| 79-92| 共14页
  • 作者

    Cohn Nicholas; Ruggiero Peter;

  • 作者单位

    Oregon State Univ, Coll Earth Ocean & Atmospher Sci, 104 CEOAS Adm Bldg, Corvallis, OR 97331 USA;

    Oregon State Univ, Coll Earth Ocean & Atmospher Sci, 104 CEOAS Adm Bldg, Corvallis, OR 97331 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Setup; Infragravity swash; Runup; Total water level; Sandbar; XBeach;

    机译:设置;重力冲洗;运行;总水位;沙洲;X海滩;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号