首页> 外文期刊>Coastal engineering >Ranking uncertainty: Wave climate variability versus model uncertainty in probabilistic assessment of coastline change
【24h】

Ranking uncertainty: Wave climate variability versus model uncertainty in probabilistic assessment of coastline change

机译:排名不确定性:波浪气候变异性与概率评估海岸线变化的模型不确定性

获取原文
获取原文并翻译 | 示例
       

摘要

Sand nourishments are increasingly applied as adaptive coastal protection measures. Predictions of the evolution of these nourishments and their impact on the surrounding coastline contain many uncertainties. The sources that add to this uncertainty can be delineated between intrinsic and epistemic uncertainty, i.e. inevitably in the system or related to knowledge limitations. Effects of intrinsic uncertainty (e.g. due to wave climate variability) on coastal evolution can be significant. In studying these effects, it has often been assumed that intrinsic uncertainty is dominant over epistemic uncertainty (e.g. introduced by the model), yet the magnitude of both contributions have not been explicitly quantified to assess the validity of this assumption. This paper examines the relative importance of intrinsic and epistemic uncertainty in coastline modeling of a large-scale nourishment. It uses a probabilistic framework in which sediment transport is considered to be a function of random wave forcing (intrinsic) and model (epistemic) uncertainty, calculating transport using a one-line model. The test case for this analysis is the mega-nourishment, the Sand Engine, located in the Netherlands. The applied wave climate variability is obtained from long term wave observations, whereas model uncertainty is quantified using the Generalized Likelihood Uncertainty Estimation (GLUE) method relying on monthly observations. We find that the confidence intervals on predicted volume losses increase substantially when including both intrinsic and epistemic sources of uncertainty. A global sensitivity analysis shows that ignoring model uncertainty would underestimate the variance by at least 50% after a 2.5-year simulation period for the Sand Engine, hence producing significant overconfidence in the results. These findings imply that for coastal modeling purposes a dual approach should be considered, evaluating both epistemic and intrinsic uncertainties.
机译:沙子营养越来越多地应用于适应性沿海保护措施。预测这些营养素的演变及其对周围海岸线的影响含有许多不确定性。为该不确定性添加的来源可以在内在和认知的不确定性之间划算,即在系统中不可避免地或与知识限制相关。内在不确定性(例如,由于波浪气候变异性)对沿海演变的影响可能是显着的。在研究这些效果时,通常假设内在的不确定度占所述认知不确定性(例如,由模型引入),但尚未明确量化两种贡献的大小以评估本假设的有效性。本文研究了大规模营养海岸线建模中内在和认识性不确定性的相对重要性。它使用探测器框架,其中沉积物传输被认为是随机波迫使(内在)和模型(认识)和模型(认识)不确定性的函数,使用单行模型计算运输。该分析的测试用例是Mega-Nourishment,砂发动机,位于荷兰。从长期波观察结果获得施加的波气候变异性,而使用依赖于每月观测的广义似然性不确定性估计(胶水)方法量化模型不确定性。我们发现,当包括内在和认知来源的不确定性包括内在和认知来源时,预测体积损失的置信区间会增加。全局敏感性分析表明,在砂发动机的2.5年仿真期后,忽略模型不确定性将低估至少50%的差异,从而在结果中产生显着的过度速度。这些发现意味着,对于沿海建模目的,应考虑一种双重方法,评估认知和内在的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号