首页> 外文期刊>Coastal engineering >Prediction of wave runup on beaches using Gene-Expression Programming and empirical relationships
【24h】

Prediction of wave runup on beaches using Gene-Expression Programming and empirical relationships

机译:利用基因表达程序和经验关系预测海滩上的波浪径流

获取原文
获取原文并翻译 | 示例
           

摘要

This paper assesses the accuracy of seven empirical models and an explicit Gene-Expression Programming (GEP) model to predict wave runup against a large dataset of runup observations. Observations consist of field and laboratory measurements and include a wide array of beach types with varying sediment sizes (from fine sand to cobbles) and bed roughness (from smooth steel to asphalt). We show that the best performing models in the literature are prone to significant errors (minimum RMSE of 1.05 m and NMSE of 0.23) when used with unseen data, i.e., uncalibrated models; however, overall error values and correlations are significantly reduced when models are optimised for the dataset. The best performing empirical models use a Hunt type scaling with an additional parameter for wave induced setup. The predictive ability of the explicit GEP model, which better captures the complex nonlinear effects of the key factors on the wave runup length, resulted in a statistically significant improvement in predictive capacity in comparison to all other empirical models assessed here, even on unseen data. Wave height, wavelength, and beach slope are shown to be the three primary factors influencing wave runup, with grain size/bed roughness having a smaller, but still significant influence on the runup. The r(2) of the best optimised existing models (which takes the form of Holman (1986) and Atkinson et al. (2017) their M2 model) was 0.77, with a RMSE of 0.85 m. These were improved to an r(2) of 0.82 (6% increase) and RMSE of 0.75 m (12% decrease) in the GEP-based model. The sensitivity of the proposed GEP-based model to each input variable is assessed via a partial derivative sensitivity analysis. The results demonstrate a higher sensitivity in the model to small values of each input and that wave steepness and beach slope are the primary factors influencing wave runup.
机译:本文评估了七个经验模型和一个显式的基因表达编程(GEP)模型的准确性,以针对大量的暴发观测资料预测波浪起伏。观测包括野外和实验室测量,并包括各种海滩类型,这些海滩类型的沉积物大小不同(从细砂到鹅卵石)和床面粗糙度(从光滑的钢到沥青)。我们发现,在与看不见的数据(即未校准的模型)一起使用时,文献中性能最好的模型容易出现重大错误(最小RMSE为1.05 m,NMSE为0.23);但是,当针对数据集优化模型时,总体误差值和相关性会大大降低。表现最佳的经验模型使用带有附加参数的Hunt类型缩放,用于波浪感应设置。与此处评估的所有其他经验模型相比,显式GEP模型的预测能力可以更好地捕获关键因素对波扩展长度的复杂非线性影响,即使在看不见的数据上,其预测能力也具有统计学上的显着提高。波高,波长和海滩坡度被证明是影响波径增加的三个主要因素,而晶粒尺寸/床面粗糙度对波径增加的影响较小,但影响仍然很大。最佳优化的现有模型(采用Holman(1986)和Atkinson等人(2017)的M2模型的形式)的r(2)为0.77,RMSE为0.85 m。在基于GEP的模型中,这些参数的r(2)改进为0.82(增加6%),RMSE为0.75 m(减少12%)。建议的基于GEP的模型对每个输入变量的敏感性通过偏导数敏感性分析进行评估。结果表明,该模型对每个输入的较小值具有较高的灵敏度,并且波陡度和海滩坡度是影响波上升的主要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号