...
首页> 外文期刊>Climate of the past >Late Miocene to Holocene high-resolution eastern equatorial Pacific carbonate records: stratigraphy linked by dissolution and paleoproductivity
【24h】

Late Miocene to Holocene high-resolution eastern equatorial Pacific carbonate records: stratigraphy linked by dissolution and paleoproductivity

机译:晚中新世至全新世高分辨率的赤道东太平洋碳酸盐记录:地层由溶解和古生产力联系在一起

获取原文
获取原文并翻译 | 示例
           

摘要

Coherent variation in CaCO3 burial is a feature of the Cenozoic eastern equatorial Pacific. Nevertheless, there has been a long-standing ambiguity in whether changes in CaCO3 dissolution or changes in equatorial primary production might cause the variability. Since productivity and dissolution leave distinctive regional signals, a regional synthesis of data using updated age models and high-resolution stratigraphic correlation is an important constraint to distinguish between dissolution and production as factors that cause low CaCO3. Furthermore, the new chronostratigraphy is an important foundation for future paleoceanographic studies. The ability to distinguish between primary production and dissolution is also important to establish a regional carbonate compensation depth (CCD). We report late Miocene to Holocene time series of XRF-derived (X-ray fluorescence) bulk sediment composition and mass accumulation rates (MARs) from eastern equatorial Pacific Integrated Ocean Drilling Program (IODP) sites U1335, U1337, and U1338 and Ocean Drilling Program (ODP) site 849, and we also report bulk-density-derived CaCO3 MARs at ODP sites 848, 850, and 851. We use physical properties, XRF bulk chemical scans, and images along with available chronostratigraphy to intercorrelate records in depth space. We then apply a new equatorial Pacific age model to create correlated age records for the last 8 Myr with resolutions of 1-2 kyr. Large magnitude changes in CaCO3 and bio-SiO2 (biogenic opal) MARs occurred within that time period but clay deposition has remained relatively constant, indicating that changes in Fe deposition from dust is only a secondary feedback to equatorial productivity. Because clay deposition is relatively constant, ratios of CaCO3 % or biogenic SiO2 % to clay emulate changes in biogenic MAR. We define five major Pliocene-Pleistocene low CaCO3 % (PPLC) intervals since 5.3 Ma. Two were caused primarily by high bio-SiO2 burial that diluted CaCO3 (PPLC-2, 1685-2135 ka, and PPLC-5, 4465-4737 ka), while three were caused by enhanced dissolution of CaCO3 (PPLC-1, 51-402 ka, PPLC-3, 2248-2684 ka, and PPLC-4, 2915-4093 ka). Regional patterns of CaCO3 % minima can distinguish between low CaCO3 caused by high diatom bio-SiO2 dilution versus lows caused by high CaCO3 dissolution. CaCO3 dissolution can be confirmed through scanning XRF measurements of Ba. High diatom production causes lowest CaCO3 % within the equatorial high productivity zone, while higher dissolution causes lowest CaCO3 percent at higher latitudes where CaCO3 production is lower. The two diatom production intervals, PPLC-2 and PPLC-5, have different geographic footprints from each other because of regional changes in eastern Pacific nutrient storage after the closure of the Central American Seaway. Because of the regional variability in carbonate production and sedimentation, the carbonate compensation depth (CCD) approach is only useful to examine large changes in CaCO3 dissolution.
机译:CaCO3埋藏的连贯变化是新生代东部赤道太平洋的特征。然而,对于CaCO3溶解度的变化或赤道一次生产的变化是否可能引起变化存在长期的歧义。由于生产率和溶出度会留下明显的区域性信号,因此使用更新的年龄模型和高分辨率地层相关性对数据进行区域性综合分析是区分溶出度和生产性因素的重要限制因素,这些因素是导致CaCO3含量较低的因素。此外,新的年代地层学是未来古海洋学研究的重要基础。区分一次开采和溶解的能力对于建立区域碳酸盐补偿深度(CCD)也很重要。我们报告了来自东赤道太平洋综合海洋钻探计划(IODP)站点U1335,U1337和U1338以及海洋钻探计划的XRF衍生的(X射线荧光)散装沉积物成分和质量累积速率(MAR)的中新世至全新世时间序列。 (ODP)站点849,我们还报告了ODP站点848、850和851上的体积密度派生的CaCO3 MAR。我们使用物理属性,XRF大量化学扫描和图像以及可用的年代地层学来相互关联深度空间中的记录。然后,我们应用新的赤道太平洋年龄模型来创建最近8 Myr的相关年龄记录,分辨率为1-2 kyr。在这段时间内发生了CaCO3和生物SiO2(生物蛋白石)MAR的大幅度变化,但粘土沉积一直保持相对恒定,这表明来自尘土的Fe沉积变化只是赤道生产率的次要反馈。由于粘土沉积相对恒定,因此CaCO3%或生物SiO2%与粘土的比率模拟了生物MAR的变化。自5.3 Ma以来,我们定义了五个主要的上新世-更新世低CaCO3%(PPLC)间隔。两种主要是由于高生物SiO2埋藏稀释了CaCO3(PPLC-2,1685-2135 ka,和PPLC-5,4465-4737 ka),而三种是由于CaCO3溶出度提高(PPLC-1,51- 402 ka,PPLC-3、2248-2684 ka和PPLC-4、2915-4093 ka)。 CaCO3%最小值的区域模式可以区分高硅藻生物SiO2稀释引起的低CaCO3和高CaCO3溶解引起的低CaCO3。可以通过扫描Ba的XRF测量来确认CaCO3的溶解。较高的硅藻产量导致赤道高生产率区内的CaCO3含量最低,而较高的溶解度则导致CaCO3产量较低的较高纬度地区的CaCO3含量最低。由于中美洲海道关闭后东太平洋营养物质存储的区域变化,两个硅藻生产区间PPLC-2和PPLC-5具有彼此不同的地理足迹。由于碳酸盐生产和沉积的区域差异,碳酸盐补偿深度(CCD)方法仅可用于检查CaCO3溶解度的大变化。

著录项

  • 来源
    《Climate of the past》 |2019年第5期|1715-1739|共25页
  • 作者单位

    Oregon State Univ Coll Earth Ocean & Atmospher Sci 104 CEOAS Admin Bldg Corvallis OR 97331 USA;

    Univ Bremen MARUM Ctr Marine Environm Sci Leobener Str D-28359 Bremen Germany|UCL Earth Sci London WC1E 6BS England;

    Tongji Univ Lab Marine Geol Siping Rd 1239 Shanghai 200092 Peoples R China;

    Univ Hawaii Sch Ocean & Earth Sci & Technol Honolulu HI 96822 USA;

    Univ Bremen MARUM Ctr Marine Environm Sci Leobener Str D-28359 Bremen Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号