...
首页> 外文期刊>Climate of the past >Response of methane emissions from wetlands to the Last Glacial Maximum and an idealized Dansgaard-Oeschger climate event:insights from two models of different complexity
【24h】

Response of methane emissions from wetlands to the Last Glacial Maximum and an idealized Dansgaard-Oeschger climate event:insights from two models of different complexity

机译:湿地甲烷排放对最后一次冰期最大值和理想化的Dansgaard-Oeschger气候事件的响应:来自两种不同复杂性模型的见解

获取原文
获取原文并翻译 | 示例
           

摘要

The role of different sources and sinks of CH_4 in changes in atmospheric methane ([CH_4]) concentration during the last 100 000 yr is still not fully understood. In particular, the magnitude of the change in wetland CH_4 emissions at the Last Glacial Maximum (LGM) relative to the pre-industrial period (PI), as well as during abrupt climatic warming or Dansgaard-Oeschger (D-O) events of the last glacial period, is largely unconstrained. In the present study, we aim to understand the uncertainties related to the parameterization of the wetland CH_4 emission models relevant to these time periods by using two wetland models of different complexity (SDGVM and ORCHIDEE). These models have been forced by identical climate fields from low-resolution coupled atmosphere-ocean general circulation model (FAMOUS) simulations of these time periods. Both emission models simulate a large decrease in emissions, during LGM in comparison to PI consistent with ice core observations and previous modelling studies. The global reduction is much larger in ORCHIDEE than in SDGVM (respectively -67 and -46 %), and whilst the differences can be partially explained by different model sensitivities to temperature, the major reason for spatial differences between the models is the inclusion of freezing of soil water in ORCHIDEE and the resultant impact on methanogenesis substrate availability in boreal regions. Besides, a sensitivity test performed with ORCHIDEE in which the methanogenesis substrate sensitivity to the precipitations is modified to be more realistic gives a LGM reduction of -36 %. The range of the global LGM decrease is still prone to uncertainty, and here we underline its sensitivity to different process parameteri-zations. Over the course of an idealized D-0 warming, the magnitude of the change in wetland CH4 emissions simulated by the two models at global scale is very similar at around 15 Tg yr~(-1), but this is only around 25 % of the ice-core measured changes in [CH4]. The two models do show regional differences in emission sensitivity to climate with much larger magnitudes of northern and southern tropical anomalies in ORCHIDEE. However, the simulated northern and southern tropical anomalies partially compensate each other in both models limiting the net flux change. Future work may need to consider the inclusion of more detailed wetland processes (e.g. linked to permafrost or tropical flood-plains), other non-wetland CH4 sources or different patterns of D-O climate change in order to be able to reconcile emission estimates with the ice-core data for rapid CH4 events.
机译:在过去的10万年中,CH_4的不同源和汇在大气甲烷([CH_4])浓度变化中的作用仍未得到充分了解。尤其是末次冰川期(LGM)相对于工业化前期(PI)以及在末次冰川期的突然气候变暖或Dansgaard-Oeschger(DO)事件中湿地CH_4排放量的变化幅度期间,基本上不受限制。在本研究中,我们旨在通过使用两个不同复杂度的湿地模型(SDGVM和ORCHIDEE)来理解与这些时间段相关的湿地CH_4排放模型的参数化相关的不确定性。这些模型是由相同气候场根据这些时间段的低分辨率耦合大气-海洋总循环模型(FAMOUS)模拟得出的。与基于冰芯观测和先前建模研究的PI相比,在LGM期间,两种排放模型都模拟了排放量的大幅减少。 ORCHIDEE中的总体减少量远大于SDGVM中的减少量(分别为-67和-46%),尽管差异可以通过不同的模型对温度敏感性来部分解释,但模型之间空间差异的主要原因是冻结兰花土壤水的含量及其对北方地区甲烷生成基质有效性的影响。此外,使用ORCHIDEE进行的敏感性测试(将甲烷生成的底物对沉淀的敏感性修改为更现实)可使LGM降低-36%。全球LGM下降的范围仍然容易产生不确定性,在这里我们强调其对不同工艺参数的敏感性。在理想的D-0变暖过程中,这两个模型在全球范围内模拟的湿地CH4排放变化的幅度在15 Tg yr〜(-1)时非常相似,但这仅占25%。冰芯测量了[CH4]的变化。这两个模型的确显示出对气候的放射敏感性的区域差异,而ORCHIDEE中北部和南部热带异常的幅度更大。但是,在两个模型中,模拟的北部和南部热带异常在部分程度上相互补偿,从而限制了净通量变化。未来的工作可能需要考虑包括更详细的湿地过程(例如,与多年冻土或热带洪泛平原相关的湿地过程),其他非湿地CH4来源或DO气候变化的不同模式,以便使排放估算值与冰层协调一致。 CH4快速事件的核心数据。

著录项

  • 来源
    《Climate of the past》 |2013年第1期|149-171|共23页
  • 作者单位

    Bristol Research Initiative for the Dynamic Global Environment (BRIDGE), School of Geographical Sciences,University of Bristol, Bristol, BS8 1SS, UK,VU University Amsterdam, Department of Earth Sciences, Boelelaan 1085, 1081 HV Amsterdam, The Netherlands,Laboratoire des Sciences du Climat et de L'Environnement, CEA/CNRS/UVSQ - UMR8212, CEA Saclay - Orme des Merisiers, 91191 Gif-sur-Yvette, France,Institute for Marine and Atmospheric Research Utrecht (IMAU), Utrecht, The Netherlands;

    Bristol Research Initiative for the Dynamic Global Environment (BRIDGE), School of Geographical Sciences,University of Bristol, Bristol, BS8 1SS, UK;

    Bristol Research Initiative for the Dynamic Global Environment (BRIDGE), School of Geographical Sciences,University of Bristol, Bristol, BS8 1SS, UK;

    Laboratoire des Sciences du Climat et de L'Environnement, CEA/CNRS/UVSQ - UMR8212, CEA Saclay - Orme des Merisiers, 91191 Gif-sur-Yvette, France;

    Laboratoire des Sciences du Climat et de L'Environnement, CEA/CNRS/UVSQ - UMR8212, CEA Saclay - Orme des Merisiers, 91191 Gif-sur-Yvette, France;

    VU University Amsterdam, Department of Earth Sciences, Boelelaan 1085, 1081 HV Amsterdam, The Netherlands;

    Laboratoire des Sciences du Climat et de L'Environnement, CEA/CNRS/UVSQ - UMR8212, CEA Saclay - Orme des Merisiers, 91191 Gif-sur-Yvette, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号