首页> 外文期刊>Climate of the past >The influence of ice sheets on temperature during the past 38 million years inferred from a one-dimensional ice sheet-climate model
【24h】

The influence of ice sheets on temperature during the past 38 million years inferred from a one-dimensional ice sheet-climate model

机译:从一维冰盖-气候模型推断出的冰盖对过去3800万年的温度的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Since the inception of the Antarctic ice sheet at the Eocene-Oligocene transition (similar to 34 Myr ago), land ice has played a crucial role in Earth's climate. Through feed-backs in the climate system, land ice variability modifies atmospheric temperature changes induced by orbital, topographical, and greenhouse gas variations. Quantification of these feedbacks on long timescales has hitherto scarcely been undertaken. In this study, we use a zonally averaged energy balance climate model bidirectionally coupled to a one-dimensional ice sheet model, capturing the ice-albedo and surface-height-temperature feedbacks. Potentially important transient changes in topographic boundary conditions by tectonics and erosion are not taken into account but are briefly discussed. The relative simplicity of the coupled model allows us to perform integrations over the past 38 Myr in a fully transient fashion using a benthic oxygen isotope record as forcing to inversely simulate CO2. Firstly, we find that the results of the simulations over the past 5 Myr are dependent on whether the model run is started at 5 or 38 Myr ago. This is because the relation between CO2 and temperature is subject to hysteresis. When the climate cools from very high CO2 levels, as in the longer transient 38 Myr run, temperatures in the lower CO2 range of the past 5 Myr are higher than when the climate is initialised at low temperatures. Consequently, the modelled CO2 concentrations depend on the initial state. Taking the realistic warm initialisa-tion into account, we come to a best estimate of CO2, temperature, ice-volume-equivalent sea level, and benthic delta O-18 over the past 38 Myr. Secondly, we study the influence of ice sheets on the evolution of global temperature and polar amplification by comparing runs with ice sheet-climate interaction switched on and off. By passing only albedo or surface height changes to the climate model, we can distinguish the separate effects of the ice-albedo and surface-height-temperature feedbacks. We find that ice volume variability has a strong enhancing effect on atmospheric temperature changes, particularly in the regions where the ice sheets are located. As a result, polar amplification in the Northern Hemisphere decreases towards warmer climates as there is little land ice left to melt. Conversely, decay of the Antarctic ice sheet increases polar amplification in the Southern Hemisphere in the high-CO2 regime. Our results also show that in cooler climates than the pre-industrial, the ice-albedo feedback predominates the surface-heighttemperature feedback, while in warmer climates they are more equal in strength.
机译:自始新世-渐新世过渡以来的南极冰盖(类似于34 Myr以前)以来,陆地冰在地球的气候中起着至关重要的作用。通过气候系统中的反馈,陆地冰的可变性改变了由轨道,地形和温室气体变化引起的大气温度变化。迄今为止,几乎没有对这些反馈进行长时间量化。在这项研究中,我们使用了与一维冰盖模型双向耦合的区域平均能量平衡气候模型,捕获了冰反射率和表面高度-温度反馈。地形边界条件中由于构造和侵蚀引起的潜在重要瞬变没有考虑在内,但仅作简要讨论。耦合模型的相对简单性使我们能够使用底栖氧同位素记录以完全瞬态的方式对过去的38 Myr进行积分,以强制反向模拟CO2。首先,我们发现过去5 Myr的仿真结果取决于模型运行是在5 Myr还是38 Myr之前开始的。这是因为,CO 2与温度之间的关系具有滞后性。当气候从非常高的CO2水平降温时,例如在较长的38 Myr瞬变运行中,过去5 Myr的较低CO2范围内的温度会比在低温下初始化气候时高。因此,模拟的CO2浓度取决于初始状态。考虑到现实的温暖初始化,我们得出了过去38 Myr的二氧化碳,温度,冰量当量海平面和底栖三角洲O-18的最佳估计。其次,我们通过比较冰盖与气候之间的交互作用开启和关闭的运行情况,研究了冰盖对全球温度演变和极地扩增的影响。通过仅将反照率或地表高度变化传递给气候模型,我们可以区分冰反照率和地表高度温度反馈的单独影响。我们发现,冰量的变化对大气温度的变化具有很强的增强作用,尤其是在冰盖所在的区域。结果,由于几乎没有剩余的陆地冰融化,北半球的极地放大作用向着温暖的气候而减少。相反,南极冰盖的衰变会在高二氧化碳状态下增加南半球的极地放大作用。我们的结果还表明,在比工业化之前更凉爽的气候中,冰-反照率反馈在表面高度温度反馈中占主导地位,而在较温暖的气候中,它们的强度更相等。

著录项

  • 来源
    《Climate of the past》 |2017年第9期|1243-1257|共15页
  • 作者单位

    Univ Utrecht, Inst Marine & Atmospher Res Utrecht IMAU, Princetonpl 5, NL-3584 CC Utrecht, Netherlands|Helmholtz Ctr Polar & Marine Res AWI, Alfred Wegener Inst, Bussestr 24, D-27570 Bremerhaven, Germany;

    Univ Utrecht, Inst Marine & Atmospher Res Utrecht IMAU, Princetonpl 5, NL-3584 CC Utrecht, Netherlands;

    Univ Utrecht, Inst Marine & Atmospher Res Utrecht IMAU, Princetonpl 5, NL-3584 CC Utrecht, Netherlands;

    Royal Netherlands Meteorol Inst KNMI, Utrechtseweg 297, NL-3731 GA De Bilt, Netherlands;

    Univ Utrecht, Fac Geosci, Dept Earth Sci, Heidelberglaan 2, NL-3584 CS Utrecht, Netherlands;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号