首页> 外文期刊>Clean technologies and environmental policy >Multi-objective versus single-objective optimization of batch bioethanol production based on a time-dependent fermentation model
【24h】

Multi-objective versus single-objective optimization of batch bioethanol production based on a time-dependent fermentation model

机译:基于时间相关发酵模型的分批生物乙醇生产的多目标与单目标优化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Traditional process simulators, such as Aspen Plus, are inadequate for optimizing multiple-objective systems in fermentation-based processes. This work uses a novel integrated platform of the robust genetic algorithm optimization in MATLAB linked with an Aspen Plus unsteady-state batch fermentation simulation to optimize the batch ethanolic fermentation process with respect to initial substrate concentration, fermentation time, and in situ product removal. A time-dependent fermentation model that utilizes both glucose and xylose, the major sugars present in lignocellulosic hydrolysate, with Monod cell growth kinetics, substrate and product inhibitions, is used as a model system. The optimized design variables from the multi-objective optimization (MOO) and single-objective optimization (SOO) suggest the typical concentrations of sugars from lignocellulosic hydrolysate must be concentrated to optimize the performance of the batch fermentation process. Furthermore, time-dependent information from an unsteady-state simulation was used to design an integrated batch fermentation with in situ product recovery, allowing higher initial sugars concentrations to be used in the fermentation process (about 50%, for the best optimal solution in the MOO). This resulted in 15% ethanol productivity, 143% total ethanol produced, and 67% fraction of sugar converted improvements relative to the batch fermentation without product recovery. Unlike the single optimal solution from the SOO, MOO presents many equally optimal solutions that can be used as a decision-support tool to guide the choice of design variables for optimum process performance. This study creates a platform that can be used to optimize integrated biorefinery and refinery processes.
机译:传统的过程模拟器(例如Aspen Plus)不足以优化基于发酵的过程中的多目标系统。这项工作使用了MATLAB中强大的遗传算法优化的新型集成平台,并结合了Aspen Plus非稳态批量发酵模拟,以针对初始底物浓度,发酵时间和原位产物去除优化了批量乙醇发酵过程。一个利用葡萄糖和木糖(存在于木质纤维素水解物中的主要糖)的时间依赖性发酵模型,具有Monod细胞生长动力学,底物和产物抑制作用,被用作模型系统。来自多目标优化(MOO)和单目标优化(SOO)的优化设计变量表明,必须浓缩木质纤维素水解产物中糖的典型浓度,以优化分批发酵过程的性能。此外,来自非稳态模拟的时变信息被用于设计具有原位产物回收的集成分批发酵,从而允许在发酵过程中使用较高的初始糖浓度(约50%,这是发酵中最佳的最佳解决方案)。 MOO)。相对于没有产品回收的分批发酵,这导致了15%的乙醇生产率,143%的总乙醇生产和67%的糖转化率提高。与SOO的单一最佳解决方案不同,MOO提供了许多同样最佳的解决方案,它们可以用作决策支持工具来指导设计变量的选择,以实现最佳过程性能。这项研究创建了一个平台,可用于优化生物精炼和精炼工艺的集成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号