首页> 外文期刊>Chemosphere >Photolysis mechanisms of tetracycline under UV irradiation in simulated aquatic environment surrounding limestone
【24h】

Photolysis mechanisms of tetracycline under UV irradiation in simulated aquatic environment surrounding limestone

机译:紫外线紫外线辐照下四环素的光解机制

获取原文
获取原文并翻译 | 示例
           

摘要

As the most typical geological environment, limestone landforms are widespreading in the world and affect the waters that flow around them, which may also change the fate of organic contaminants in these waters. In this study, aquatic environment surrounding limestone was simulated with calcium carbonate, and the photolysis of tetracycline was evaluated under UV irradiation (30 mW/cm(2)). More tetracycline (up to 98%) was removed in 4 h in the presence of calcium carbonate while only 50% of tetracycline was eliminated in control experiment. The removal of tetracycline was greatly enhanced due to the major roles of alkaline pH and minor roles of Ca2+ and HCO3-/CO3In alkaline pH, tetracycline existed as TCs- with higher electronic density in the ring structures, which was more easily attacked by OH. Besides, it could also change the bond orbital energy to facilitate tetracycline absorbing more photon. Moreover, alkaline pH was beneficial to generate more OH and thus promote the indirect photolysis. In addition, alkaline pH also changed the degradation path of tetracycline and rapidly convert tetracycline to the byproducts with m/z 457 via hydroxylation and hydrogen abstraction. This work provides not only better understanding about the fate of tetracycline in aquatic environments but also new insights into the treatment of antibiotic-contaminated water. (C) 2019 Elsevier Ltd. All rights reserved.
机译:作为最典型的地质环境,石灰石地貌在世界范围内普及,并影响流动的水域,这也可能改变这些水中有机污染物的命运。在该研究中,用碳酸钙模拟围绕石灰石的水生环境,并在UV照射下评价四环素的光解(30mW / cm(2))。在碳酸钙的存在下在4小时内除去更多的四环素(高达98%),而在对照实验中仅消除了50%的四环素。由于Ca2 +和HCO 3-/ CO 3蛋白碱性pH的主要作用和Ca2 +和HCO3- / CO 3蛋白碱性pH的主要作用,Tetracycline作为TCS的主要作用大大提高了四环素,在环形结构中具有较高的电子密度,这更容易被OH攻击OH。此外,它还可以改变粘合轨道能量,以促进四环素吸收更多光子。此外,碱性pH有利于产生更多OH,从而促进间接光解。此外,碱性pH也改变了四环素的降解路径,并通过羟基化和氢抽取快速将四环素与M / Z 457的副产物转化为副产物。这项工作不仅可以更好地了解水生环境中四环素的命运,还提供了对抗生素污染水处理的新见解。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Chemosphere》 |2020年第4期|125582.1-125582.8|共8页
  • 作者单位

    Shandong Univ Sch Environm Sci & Engn Shandong Key Lab Water Pollut Control & Resource Qingdao 266237 Peoples R China;

    Shandong Univ Sch Environm Sci & Engn Shandong Key Lab Water Pollut Control & Resource Qingdao 266237 Peoples R China;

    Finzhou Inspect Examinat & Certificat Ctr Jinzhou 121000 Peoples R China;

    Shandong Univ Sch Environm Sci & Engn Shandong Key Lab Water Pollut Control & Resource Qingdao 266237 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Tetracycline; Photolysis; Limestone; Alkaline pH; Hydroxyl radical;

    机译:四环素;光解;石灰石;碱性pH;羟基自由基;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号