...
首页> 外文期刊>Chemical Fibers International >Fabrication and upscaling of spinning processes for ceramic high-tech fiber production
【24h】

Fabrication and upscaling of spinning processes for ceramic high-tech fiber production

机译:陶瓷高科技纤维生产的纺丝工艺的制造和升级

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Ceramic fibers for high-tech applications require intensive developments concerning precursor synthesis and fiber spinning. The spinning process starts at laboratory scale with only few filaments and needs to be upscaled to pilot plant and industrial scale with hundreds or even thousands of filaments. Due to the significant interaction of filaments and surrounding inert atmosphere, the behavior in the spinning tower completely changes with higher numbers of filaments. How these effects are incorporated in a model of the gas flow including its influence by the filament spinning will be described. In 2 examples for melt- and dry-spinning of ceramic fibers it will be demonstrated how characteristic properties derived from experiments on a laboratory scale can be efficiently transferred to a pilot plant scale by use of simulations. For both applications the spinning tower was built according to the conditions derived from the simulation results, and experimentally proven to work. Ceramic fibers can be grouped according to their chemical composition into oxide and non-oxide fibers. Examples are Al_2O_3, 3Al_2O_3-2SiO_2, SiO_2 for oxide and SiC, Si(B)NC and C for non-oxide ceramic fibers. Ceramic fibers are characterized by high tensile strength and stiffness, high temperature stability and a good corrosion resistance. They are used in applications like reinforcement of ceramic or metallic composites (CMC: ceramic matrix composites; MMC: metal matrix composites), insulation, filtration and catalysis.
机译:用于高科技应用的陶瓷纤维需要有关前体合成和纤维纺丝的深入开发。纺纱过程从只有几根长丝的实验室规模开始,需要升级到具有数百甚至数千根长丝的中试工厂和工业规模。由于细丝和周围惰性气氛之间的显着相互作用,纺丝塔中的行为随着细丝数量的增加而完全改变。将描述如何将这些效应包括在气流模型中,包括其受长丝纺丝的影响。在两个用于陶瓷纤维熔融纺丝和干纺的示例中,将演示如何通过模拟将实验室规模的实验衍生的特性有效地转换为中试规模。对于这两种应用,纺丝塔都是根据模拟结果得出的条件建造的,并经过实验证明是可行的。陶瓷纤维可根据其化学组成分为氧化物纤维和非氧化物纤维。实例是Al_2O_3、3Al_2O_3-2SiO_2,用于氧化物和SiC的SiO_2,用于非氧化物陶瓷纤维的Si(B)NC和C。陶瓷纤维的特点是高拉伸强度和刚度,高温稳定性和良好的耐腐蚀性。它们用于增强陶瓷或金属复合材料(CMC:陶瓷基复合材料; MMC:金属基复合材料),绝缘,过滤和催化等应用。

著录项

  • 来源
    《Chemical Fibers International》 |2013年第1期|42-44|共3页
  • 作者单位

    Fraunhofer-lnstitute for Industrial Mathematics ITWM, Kaiserslautern/Germany;

    Fraunhofer-lnstitute for Silicate Research ISC/ Center for High Temperature Materials and Design, Wurzburg/Germany;

    SGL Carbon GmbH, Meitingen/Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号