首页> 外文期刊>Chemical Communications >Interaction Of Lithium Hydride And Ammonia Borane In Thf
【24h】

Interaction Of Lithium Hydride And Ammonia Borane In Thf

机译:氢化锂与氨硼烷的相互作用

获取原文
获取原文并翻译 | 示例
       

摘要

The two-step reaction between LiH and NH3BH3 in THF leads to the production of more than 14 wt% of hydrogen at 40℃.rnThe demand for high capacity on-board hydrogen storage systems for hydrogen fuel cell vehicles has stimulated tremendous efforts in materials research and development. Recent research efforts have focused on materials that are composed of hydrogen bound to light elements including borohydrides, MOFs, amide-hydride combination systems, and ammonia borane. With a hydrogen capacity of 19.6 wt%, ammonia borane (NH3BH3, AB for short) shows promise for hydrogen storage; however, decomposition gives a volatile side product, borazine, that will poison PEM fuel cells. In addition, the desorption of hydrogen from this chemical hydride has a sufficient barrier to render the kinetics too slow at temperatures below 80 ℃. Our recent effort to modify the kinetics and thermodynamics of H_2 release from AB by replacing one H with an alkali metal, i.e., alkali amidoboranes (MNH_2BH_3, M = Li and Na) provided some improvement. These amidoboranes release large amount of hydrogen (exp. 10.9 wt%) with no measurable borazine formation, however, the kinetics for H_2 desorption are still insufficient. Previous investigations on hydrogen release from complex hydrides revealed that mass transport or mobility of the reacting species is one of the kinetic controlling factors. The mobility of the species can be enhanced substantially upon dissolution in a solvent. In the present study we investigate the reactivity of AB dissolved in tetrahydrofuran (THF) with a suspension of LiH and observe the formation of LiNH_2BH_3 and enhanced reaction kinetics with an interesting dependence on AB concentration. More than 2.8 equiv. of hydrogen can be released in two steps at a temperature as low as 40 ℃.
机译:LiH和NH3BH3在THF中的两步反应导致在40℃时产生超过14 wt%的氢气。rn对氢燃料电池汽车大容量车载氢存储系统的需求刺激了材料研究的巨大努力和发展。最近的研究工作集中在由氢键合到轻元素上的材料,包括硼氢化物,MOF,酰胺-氢化物结合系统和氨硼烷。氨硼烷(NH3BH3,简称AB)的氢气容量为19.6 wt%,显示出可以储氢的潜力;但是,分解会产生挥发性副产物硼嗪,会毒化PEM燃料电池。另外,氢从该化学氢化物中的解吸具有足够的屏障,使得在低于80℃的温度下动力学太慢。我们最近通过用碱金属即碱金属氨基硼烷(MNH_2BH_3,M = Li和Na)代替一个H来改变从AB释放H_2的动力学和热力学的努力提供了一些改进。这些酰胺基硼烷释放出大量的氢气(约占10.9 wt%),没有可测量的硼嗪形成,但是H_2解吸动力学仍然不足。以前对从复合氢化物释放氢的研究表明,反应物质的质量迁移或迁移是动力学控制因素之一。溶解在溶剂中后,物质的迁移率可大大提高。在本研究中,我们研究了溶解于四氢呋喃(THF)中的AB与LiH悬浮液的反应性,并观察到LiNH_2BH_3的形成和增强的反应动力学,且对AB浓度的依赖性很大。大于2.8当量在低至40℃的温度下,氢气可以分两步释放。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号