...
首页> 外文期刊>MRS bulletin >Metallic composites processed via extreme deformation: Toward the limits of strength in bulk materials
【24h】

Metallic composites processed via extreme deformation: Toward the limits of strength in bulk materials

机译:通过极端变形加工的金属复合材料:达到散装材料强度极限

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We review microstructures and properties of metal matrix composites produced by severe plastic deformation of multiphase alloys. Typical processings are wire drawing, ball milling, roll bonding, equal-channel angular extrusion, and high-pressure torsion of multiphase materials. Similar phenomena occur between solids in frictional contact such as in tribology, friction stir welding, and explosive joining. The resulting compounds are characterized by very high interface and dislocation density, chemical mixing, and atomic-scale structural transitions at heterointerfaces. Upon straining, the phases form into nanoscaled filaments. This leads to enormous strengthening combined with good ductility, as in damascene steels or pearlitic wires, which are among the strongest nanostructured bulk materials available today (tensile strength above 6GPa). Similar materials are Cu-Nb and Cu-Ag composites, which also have good electrical conductivity that qualifies them for use in high-field magnets. Beyond the engineering opportunities, there are also exciting fundamental questions.They relate to the nature of the complex dislocation, amorphization, and mechanical alloying mechanisms upon straining and their relationship to the enormous strength. Studying these mechanisms is enabled by mature atomic-scale characterization and simulation methods. A better understanding of the extreme strength in these materials also provides insight into modern alloy design based on complex solid solution phenomena.
机译:我们审查了由多相合金的严重塑性变形产生的金属基复合材料的微观结构和性能。典型的加工是拉丝,球磨,辊压粘合,等通道角挤压和多相材料的高压扭转。摩擦接触中的固体之间会发生类似的现象,例如摩擦学,搅拌摩擦焊和爆炸连接。所得化合物的特征在于非常高的界面和位错密度,化学混合以及异质界面处的原子级结构转变。拉伸后,相形成纳米级细丝。这导致了巨大的强化以及良好的延展性,例如大马士革钢或珠光体线材,它们是当今可用的最坚固的纳米结构体材料(抗拉强度高于6GPa)。类似的材料是Cu-Nb和Cu-Ag复合材料,它们还具有良好的导电性,因此有资格在高磁场磁体中使用。除了工程机会之外,还存在一些令人兴奋的基本问题,这些问题涉及应变时复杂的位错,非晶化和机械合金化机制的性质及其与巨大强度的关系。通过成熟的原子尺度表征和仿真方法可以研究这些机制。更好地了解这些材料的极限强度,还可以洞悉基于复杂固溶现象的现代合金设计。

著录项

  • 来源
    《MRS bulletin》 |2010年第12期|p.982-991|共10页
  • 作者单位

    Max-Planck-Institut fuer Eisenforschung in Duesseldorf, Germany;

    rnMax-Planck-Institut fuer Eisenforschung in Duesseldorf, Germany;

    rnMax-Planck-Institut fuer Eisenforschung in Duesseldorf, Germany;

    rnMax-Planck-Institut fuer Eisenforschung in Duesseldorf, Germany;

    rnInstitut de Physique at the University of Rouen, France;

    rnLaboratoire National des Champs Magnetiques Intenses at CNRS, Toulouse, France;

    rnNational Institute for Materials Science in Sengen, Tsukuba, Japan;

    rnMaterials Physics Institute at the University of Goettingen;

    rnErich Schmid Institute in Leoben, Austria;

    rnMcMaster University, Hamilton, Canada;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号