...
首页> 外文期刊>Bulletin of the Brazilian Mathematical Society >A combinatorial proof of an identity of Ramanujan using tilings
【24h】

A combinatorial proof of an identity of Ramanujan using tilings

机译:使用切片的Ramanujan身份的组合证明

获取原文
获取原文并翻译 | 示例
           

摘要

Recently, Little and Sellers proved combinatorially a variety of Rogers-Ramanujan type of identities. They interpreted both sides of the equalities as enumerating the same collection of “weighted tilings”. They tiled an infinite 1 × ∞ board, with squares and dominos. In their articles, the concept of “projection” of tiles was defined. In this article, we use and extend some of their ideas and give a combinatorial proof to the following identity proposed in a survey of Pak $sumlimits_{n = 0}^infty {frac{{(1 + q)(1 + q^3 ) cdots (1 + q^{2n - 1} )}}n{{[(1 - q^2 )(1 - q^4 ) cdots (1 - q^{2n} )]^2 }}q^{n^2 } } = prodlimits_{n = 0}^infty {frac{{1 + q^{2n + 1} }}n{{1 - q^{2n + 2} }}} .$sumlimits_{n = 0}^infty {frac{{(1 + q)(1 + q^3 ) cdots (1 + q^{2n - 1} )}}n{{[(1 - q^2 )(1 - q^4 ) cdots (1 - q^{2n} )]^2 }}q^{n^2 } } = prodlimits_{n = 0}^infty {frac{{1 + q^{2n + 1} }}n{{1 - q^{2n + 2} }}} .
机译:最近,Little和Sellers组合地证明了Rogers-Ramanujan类型的各种身份。他们将平等的两面都解释为列举了相同的“加权平铺”集合。他们用正方形和多米诺骨牌平铺了一个无限的1×∞板。在他们的文章中,定义了瓷砖的“投影”概念。在本文中,我们使用并扩展了他们的一些想法,并为以下在Pak $ sumlimits_ {n = 0} ^ infty {frac {{((1 + q)(1 + q ^ 3)cdots(1 + q ^ {2n-1})}} n {{[[(1-q ^ 2)(1-q ^ 4)cdots(1-q ^ {2n})] ^ 2}} q ^ {n ^ 2}} = prodlimits_ {n = 0} ^ infty {frac {{1 + q ^ {2n + 1}}} n {{1- q ^ {2n + 2}}}} .. $ sumlimits_ { n = 0} ^ infty {frac {{(1 + q)(1 + q ^ 3)cdots(1 + q ^ {2n-1})}}} n {{[[(1-q ^ 2)(1- q ^ 4)cdots(1-q ^ {2n})] ^ 2}} q ^ {n ^ 2}} = prodlimits_ {n = 0} ^ infty {frac {{1 + q ^ {2n + 1}}} } n {{1-q ^ {2n + 2}}}}。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号