...
首页> 外文期刊>British journal of oral & maxillofacial surgery >Microvascular stress analysis Part Ⅰ: Simulation of microvascular anastomoses using finite element analysis
【24h】

Microvascular stress analysis Part Ⅰ: Simulation of microvascular anastomoses using finite element analysis

机译:微血管应力分析第一部分:使用有限元分析模拟微血管吻合

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Purpose of the study: To develop a finite element model (FEM) to study the effect of the stress and strain, in microvascular anastomoses that result from the geometrical mismatch of anastomosed vessels. Material and methods: FEMs of end-to-end and end-to-side anastomoses were constructed. Simulations were made using finite element software (NISA). We investigated the angle of inset in the end-to-side anastomosis and the discrepancy in the size of the opening in the vessel between the host and recipient vessels. The FEMs were used to predict principal and shear stress and strain at the position of each node. Results: Two types of vascular deformation were predicted during different simulations: longitudinal distortion, and rotational distortion. Stress values ranged from 151.1 to 282.4 MPa for the maximum principal stress, from -122.9 to -432.2 MPa for the minimum principal stress, and from 122.1 to 333.1 MPa for the maximum shear stress. The highest values were recorded when there was a 50% mismatch in the diameter of the vessels at the site of the end-to-end anastomosis. Conclusion: The effect of the vessel's size discrepancy on the blood flow and deformation was remarkable in the end-to-end anastomosis. End-to-side anastomosis was superior to end-to-end anastomosis. FEM is a powerful tool to study vascular deformation, as it predicts deformation and biomechanical processes at sites where physical measurements are likely to remain impossible in living humans.
机译:研究目的:建立有限元模型(FEM),以研究应力和应变在由吻合血管几何失配引起的微血管吻合中的作用。材料和方法:构造了端对端和端对侧吻合的FEM。使用有限元软件(NISA)进行仿真。我们调查了端侧吻合术中的插入角度和宿主与受体血管之间的血管开口大小的差异。有限元法用于预测每个节点位置处的主应力和剪应力及应变。结果:在不同的模拟过程中预测了两种类型的血管变形:纵向变形和旋转变形。应力值的最大主应力范围为151.1至282.4 MPa,最小主应力范围为-122.9至-432.2 MPa,最大剪切应力的范围为122.1至333.1 MPa。当端对端吻合部位的血管直径不匹配50%时,记录到最高值。结论:在端到端吻合术中,血管尺寸差异对血流和变形的影响显着。端到端吻合优于端到端吻合。有限元分析是研究血管变形的有力工具,因为它可以预测在人体可能无法进行物理测量的部位的变形和生物力学过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号