首页> 外文学位 >An interface-enriched generalized finite element method for the design of actively-cooled microvascular composites.
【24h】

An interface-enriched generalized finite element method for the design of actively-cooled microvascular composites.

机译:用于主动冷却微血管复合材料设计的富含界面的广义有限元方法。

获取原文
获取原文并翻译 | 示例

摘要

The computational design of embedded microchannels in actively-cooled 3D woven microvascular composite plates for high-temperature applications in hypersonic aircrafts is studied in this thesis project. Besides manufacturing constraints, the optimal network configuration in the microvascular composite depends on a variety of parameters including the dimensions of the plate, applied thermal loads, diameter and shape of the microchannels, and type of the coolant. Minimizing three objective functions are considered during the design process: the maximum temperature of the material, the void volume fraction of the microchannels, and the pressure drop needed to circulate the coolant in the network. One of the main challenges in evaluating the thermo-mechanical response of this system with conventional schemes such as the finite element method is the complex microstructure of the microvascular composite and thus the laborious process of creating conforming (matching) meshes. A novel Interface-enriched Generalized Finite Element Method (IGFEM) is proposed and developed to address this problem using finite element meshes that are independent of the problem morphology. To capture the temperature gradient discontinuity caused by the mismatch between the materials properties of the fluid and the solid phases, the IGFEM employs enrichment functions associated with new nodes created at the intersection of the microchannel surfaces with the edges of nonconforming elements of the mesh. The IGFEM formulation and its implementation for 2D and 3D conjugate heat transfer problems are presented and a detailed convergence study is provided to show that the method yields the same convergence rate and precision as those of the standard FEM with conforming meshes. A higher-order IGFEM formulation is also developed to more accurately simulate problems with complex curved interfaces without refining the finite element mesh. To validate the IGFEM solver, we compare the data collected from the thermal assessment of an actively-cooled microvascular epoxy fin with the temperature field obtained from the IGFEM solver for the same problem. The validated IGFEM solver is then employed to investigate the optimal configuration of the embedded microchannels in the actively-cooled composite. This study includes a detailed discussion of the impact of various design parameters on the thermal response of the microvascular composite.
机译:本文研究了超音速飞机高温应用的主动冷却3D编织微血管复合板中嵌入式微通道的计算设计。除了制造方面的限制外,微血管复合材料的最佳网络构型还取决于各种参数,包括板的尺寸,施加的热负荷,微通道的直径和形状以及冷却剂的类型。在设计过程中要考虑使三个目标函数最小化:材料的最高温度,微通道的空隙体积分数以及使冷却剂在网络中循环所需的压降。用常规方案(例如有限元方法)评估该系统的热机械响应的主要挑战之一是微血管复合材料的复杂微观结构,因而是创建合格(匹配)网格的费力过程。提出并开发了一种新颖的富含界面的广义有限元方法(IGFEM),以使用独立于问题形态的有限元网格来解决此问题。为了捕获由于流体和固相的材料特性不匹配而引起的温度梯度不连续性,IGFEM采用了与在微通道表面与网格不合格元素的边缘相交处创建的新节点相关的富集功能。介绍了IGFEM公式及其在2D和3D共轭传热问题中的实现,并进行了详细的收敛研究,以表明该方法产生的收敛速度和精度与具有标准网格的标准FEM相同。还开发了更高阶的IGFEM公式,以更精确地模拟复杂曲面界面的问题,而无需改进有限元网格。为了验证IGFEM求解器,我们将通过主动冷却的微血管环氧鳍片的热评估收集的数据与从IGFEM求解器获得的温度场进行比较。然后使用经过验证的IGFEM求解器来研究主动冷却的复合材料中嵌入式微通道的最佳配置。这项研究包括对各种设计参数对微血管复合材料热响应影响的详细讨论。

著录项

  • 作者

    Soghrati, Soheil.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Civil engineering.;Mechanical engineering.;Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2013
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号