首页> 外文期刊>BioScience >Listening for Large Whales in the Offshore Waters of Alaska
【24h】

Listening for Large Whales in the Offshore Waters of Alaska

机译:在阿拉斯加近海聆听大型鲸鱼

获取原文
获取原文并翻译 | 示例
           

摘要

In 1999, the first phase of a multiyear program was initiated at the National Oceanic and Atmospheric Administration's National Marine Mammal Laboratory and Pacific Marine Environmental Laboratory to advance the use of passive acoustics for the detection and assessment of large whales in offshore Alaskan waters. To date, autonomous recorders have been successfully deployed in the Gulf of Alaska (1999–2001), the southeastern Bering Sea (2000–present), and the western Beaufort Sea (2003–2004). Seasonal occurrences of six endangered species (blue, fin, humpback, North Pacific right, bowhead, and sperm whales) have been documented on the basis of call receptions in these remote ocean regions. In addition, eastern North Pacific gray whale calls were detected in the western Beaufort Sea from October 2003 through May 2004. Here we provide an overview of this suite of research projects and suggest the next steps for applying acoustic data from long-term recorders to the assessment of large whale populations.nnLarge whales were severely depleted by commercial whaling from the 18th through the late 20th century, to such an extent that all were included in the initial US listing of endangered species in 1973. Targeted species included blue, fin, humpback, right, Bryde's, and sperm whales (box 1), and although precise numbers are unknown, the removal of at least two million whales over roughly 200 years is well documented (Clapham et al. 1999). While this intensive exploitation underlies the recent controversial hypothesis of top-down ecosystem forcing—the so-called “megafaunal collapse” hypothesis (Springer et al. 2003, Mizroch and Rice forthcoming)—it also sets a challenge to scientists and resource managers charged with estimating current population sizes and habitat protection for these endangered species.nnWith the end of the cold war and the subsequent willingness of the US government to allow dual use of some military assets (Nishimura and Conlon 1993), a unique opportunity arose to use the US Navy's SOSUS (Sound Surveillance System) underwater hydrophone network to detect and track whales. Biologists welcomed this opportunity, and found in SOSUS an unprecedented tool to detect blue and fin whale calls over long distances in the North Atlantic and North Pacific basins (Clark 1995, Watkins et al. 2000, Stafford et al. 2001) and to track individual whales that produced atypical calls (Watkins et al. 2004). In the North Pacific, the seasonal detection of endangered blue and fin whale calls, using SOSUS, provided a means to correlate call occurrence with habitat features in remote areas off the Kamchatka Peninsula (Moore et al. 2002) and to investigate whale response to ocean climate variability off California (Burtenshaw et al. 2004).nnThe success of research that used SOSUS to track seasonal occurrence patterns in whale calls fostered the development of autonomous recorders that could be deployed virtually anywhere in the world's oceans (Fox et al. 2001, Wiggins 2003). Two types of recorders have been used off Alaska: (1) autonomous hydrophones developed by the National Oceanic and Atmospheric Administration's (NOAA) Pacific Marine Environmental Laboratory (PMEL) (Fox et al. 2001; www.pmel.noaa.gov/vents/acoustics/whales/bioacoustics.html) and (2) acoustic recording packages (ARPs; Wiggins 2003, http://cetus.ucsd.edu). The PMEL hydrophone consists of a watertight titanium pressure case containing alkaline batteries, a data logging system with one to six hard disk drives, and a hydrophone outside the case. The ARPs, developed by the Marine Physical Laboratory of the Scripps Institution of Oceanography, consist of a frame that holds the batteries, hard disk drives, and ballast, with a hydrophone suspended about 7 meters (m) above the frame. The recording bandwidth for both recorders ranges from 230 to 880 hertz (Hz) (sample rates 500 to 2000 Hz) depending on the unit, with hard disk drive storage capacity of 36 to 160 gigabytes. They are thus capable of continuous recording during 200- to 400-day deployments. Both types of instruments need to be recovered in order to retrieve the acoustic data.nnThe principal difference between the instruments is that the PMEL recorder is moored with the hydrophone suspended up into the deep sound channel, while the ARP's hydrophone samples sound at roughly 10 m above the seafloor (figure 1). Both instruments have proved to be flexible tools for acoustic observations of large whales in remote areas of the world's oceans, as demonstrated by deployments along the mid-Atlantic ridge (Nieukirk et al. 2004), the eastern tropical Pacific (Stafford et al. 1999a), and the Antarctic Peninsula (Sirovic et al. 2004). As such, they are especially suitable for cetacean detection in the offshore waters of Alaska, where standard visual surveys are often hampered by darkness and bad weather.
机译:在1999年,美国国家海洋与大气管理局的国家海洋哺乳动物实验室和太平洋海洋环境实验室启动了一项多年计划的第一阶段,以促进无源声学技术在阿拉斯加近海水域中对大型鲸鱼的检测和评估。迄今为止,自主记录器已成功部署在阿拉斯加湾(1999-2001年),东南白令海(2000年至今)和西部波弗特海(2003-2004年)中。根据这些偏远海洋地区的接听电话记录了六个濒危物种(蓝色,鳍,座头鲸,北太平洋右翼,弓头和抹香鲸)的季节性事件。此外,从2003年10月至2004年5月,在波弗特海西部发现了北太平洋东部的灰鲸。 nn从18世纪到20世纪后期,商业捕鲸严重消耗了大鲸,其程度使得所有这些都包括在1973年的美国最初濒危物种清单中。目标物种包括蓝,鳍,座头鲸。 ,对,布赖德和抹香鲸(专栏1),尽管确切的数字尚不清楚,但是在大约200年的时间内至少有200万条鲸鱼被清除了(Clapham等,1999)。尽管这种密集的开发为自上而下的生态系统强迫的最近有争议的假设(即所谓的“大型动物崩溃”假设)(Springer等人,2003年,Mizroch和Rice即将推出)奠定了基础,但它也给负责该领域的科学家和资源管理者带来了挑战随着冷战的结束以及美国政府随后允许双重使用某些军事资产的意愿(Nishimura and Conlon 1993),出现了使用美国的独特机会。海军的SOSUS(声音监视系统)水下水听器网络可检测和跟踪鲸鱼。生物学家欢迎这一机会,并在SOSUS中发现了一种前所未有的工具,可以检测北大西洋和北太平洋盆地中远距离的蓝鲸和长须鲸(Clark,1995; Watkins等,2000; Stafford等,2001)并跟踪个体产生非典型呼唤的鲸鱼(Watkins等,2004)。在北太平洋,使用SOSUS对濒临灭绝的蓝鲸和长尾鲸的鸣叫进行季节性检测,提供了一种方法,将鸣叫的发生与堪察加半岛偏远地区的栖息地特征相关联(Moore等,2002),并研究了鲸鱼对海洋的反应加利福尼亚以外的气候变率(Burtenshaw et al。2004).nn利用SOSUS追踪鲸鱼呼叫中季节性发生模式的研究成功促进了自动记录仪的发展,该记录仪可以部署在世界上几乎任何地方(Fox et al。2001, Wiggins 2003)。阿拉斯加已经使用了两种类型的记录器:(1)由美国国家海洋与大气管理局(NOAA)太平洋海洋环境实验室(PMEL)开发的自动水听器(Fox等,2001; www.pmel.noaa.gov/vents/声学/鲸鱼/生物声学.html)和(2)声学录音包(ARPs; Wiggins 2003,http://cetus.ucsd.edu)。 PMEL水听器包括一个装有碱性电池的防水钛压壳体,一个带有一到六个硬盘驱动器的数据记录系统以及一个位于壳体外部的水听器。 ARP由斯克里普斯海洋研究所的海洋物理实验室开发,由一个框架固定电池,硬盘驱动器和镇流器组成,水听器悬挂在框架上方约7米(m)处。根据设备的不同,两个记录器的记录带宽范围为230到880赫兹(Hz)(采样率500到2000 Hz),硬盘驱动器的存储容量为36到160 GB。因此,它们能够在200到400天的部署期间连续记录。两种类型的仪器都需要进行恢复才能检索声学数据。nn仪器之间的主要区别在于,PMEL录音机系在水听器悬挂在深声音通道中的情况下系泊的,而ARP的水听器在大约10 m处采样声音在海底之上(图1)。事实证明,这两种仪器都是灵活的工具,可用于在世界海洋偏远地区进行大鲸鱼的声学观测,如大西洋中脊(Nieukirk等,2004),热带东部太平洋(Stafford等,1999a)的部署所证明的那样。 )和南极半岛(Sirovic等,2004)。因此,它们特别适合在阿拉斯加近海中的鲸类动物检测,那里的标准目视调查常常受到黑暗和恶劣天气的阻碍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号