...
首页> 外文期刊>Biomedical Engineering, IEEE Transactions on >Theoretical Optimization of Stimulation Strategies for a Directionally Segmented Deep Brain Stimulation Electrode Array
【24h】

Theoretical Optimization of Stimulation Strategies for a Directionally Segmented Deep Brain Stimulation Electrode Array

机译:定向分段深部脑刺激电极阵列的刺激策略的理论优化

获取原文
获取原文并翻译 | 示例
           

摘要

Programming deep brain stimulation (DBS) systems currently involves a clinician manually sweeping through a range of stimulus parameter settings to identify the setting that delivers the most robust therapy for a patient. With the advent of DBS arrays with a higher number and density of electrodes, this trial and error process becomes unmanageable in a clinical setting. This study developed a computationally efficient, model-based algorithm to estimate an electrode configuration that will most strongly activate tissue within a volume of interest. The cerebellar-receiving area of motor thalamus, the target for treating essential tremor with DBS, was rendered from imaging data and discretized into grid points aligned in approximate afferent and efferent axonal pathway orientations. A finite-element model (FEM) was constructed to simulate the volumetric tissue voltage during DBS. We leveraged the principle of voltage superposition to formulate a convex optimization-based approach to maximize activating function (AF) values at each grid point (via three different criteria), hence increasing the overall probability of action potential initiation and neuronal entrainment within the target volume. For both efferent and afferent pathways, this approach achieved global optima within several seconds. The optimal electrode configuration and resulting AF values differed across each optimization criteria and between axonal orientations. This approach only required a set of FEM simulations equal to the number of DBS array electrodes, and could readily accommodate anisotropic-inhomogeneous tissue conductances or other axonal orientations. The algorithm provides an efficient, flexible determination of optimal electrode configurations for programming DBS arrays.
机译:目前,对深部脑刺激(DBS)系统进行编程时,临床医生需要手动扫过一系列刺激参数设置,以识别为患者提供最可靠治疗的设置。随着电极数量和密度更高的DBS阵列的出现,这种反复试验的过程在临床环境中变得难以管理。这项研究开发了一种计算有效的,基于模型的算法,以估计将最强烈激活目标体积内的组织的电极配置。运动性丘脑的小脑接收区域,DBS治疗原发性震颤的目标,从成像数据中绘制出来,并离散成沿大致传入和传出轴突路径方向排列的网格点。构建了有限元模型(FEM)以模拟DBS期间的组织体积电压。我们利用电压叠加原理来制定基于凸优化的方法,以最大化每个网格点处的激活函数(AF)值(通过三个不同的标准),从而增加了目标体积内动作电位启动和神经元夹带的总体可能性。对于传出和传出途径,这种方法在几秒钟内就达到了全局最优。最佳电极配置和所得的AF值在每个优化标准之间以及在轴突方向之间都不同。这种方法只需要一组FEM模拟,其数量等于DBS阵列电极的数量,并且可以轻松适应各向异性非均质的组织电导或其他轴突方向。该算法为编程DBS阵列提供了有效,灵活的最佳电极配置确定方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号