首页> 外文期刊>IEEE Transactions on Biomedical Engineering >Algorithmically Controlled Electroporation: A Technique for Closed Loop Temperature Regulated Pulsed Electric Field Cancer Ablation
【24h】

Algorithmically Controlled Electroporation: A Technique for Closed Loop Temperature Regulated Pulsed Electric Field Cancer Ablation

机译:算法控制的电穿孔:闭环温度调节脉冲电场癌症消融技术

获取原文
获取原文并翻译 | 示例
           

摘要

Objective: To evaluate the effect of a closed-loop temperature based feedback algorithm on ablative outcomes for pulsed electric field treatments. Methods: A 3D tumor model of glioblastoma was used to assess the impact of 2 mu s duration bipolar waveforms on viability following exposure to open and closed-loop protocols. Closed-loop treatments evaluated transient temperature increases of 5, 10, 15, or 22 degrees C above baseline. Results: The temperature controlled ablation diameters were conditionally different than the open-loop treatments and closed-loop treatments generally produced smaller ablations. Closed-loop control enabled the investigation of treatments with steady state 42 degrees C hyperthermic conditions which were not feasible without active feedback. Baseline closed-loop treatments at 20 degrees C resulted in ablations measuring 9.9 +/- 0.3 mm in diameter while 37 degrees C treatments were 20% larger (p < 0.0001) measuring 11.8 +/- 0.3 mm indicating that this protocol induces a thermally mediated biological response. Conclusion: A closed-loop control algorithm which modulated the delay between successive pulse waveforms to achieve stable target temperatures was demonstrated. Algorithmic control enabled the evaluation of specific treatment parameters at physiological temperatures not possible with open-loop systems due to excessive Joule heating. Significance: Irreversible electroporation is generally considered to be a non-thermal ablation modality and temperature monitoring is not part of the standard clinical practice. The results of this study indicate ablative outcomes due to exposure to pulses on the order of one microsecond may be thermally mediated and dependent on local tissue temperatures. The results of this study set the foundation for experiments in vivo utilizing temperature control algorithms.
机译:目的:评价闭环温度基于反馈算法对脉冲电场处理的消融结果的影响。方法:使用胶质细胞瘤的3D肿瘤模型来评估2μs持续时间双极波形对暴露于开放和闭环方案后的活力的影响。闭环处理评估的瞬态温度增加5,10,15或22摄氏度。结果:温度控制的消融直径与开环处理有条件不同,闭环处理通常产生较小的消融。闭环控制使具有稳定状态42摄氏度42摄氏度的治疗的调查是不可行的而无需积极反馈。基线闭环处理在20摄氏度下,导致直径为9.9 +/- 0.3mm的消融,而37摄氏度处理较大(P <0.0001),测量11.8 +/- 0.3mm表示该方案诱导热介导的生物反应。结论:对闭环控制算法调制了连续脉冲波形之间以实现稳定目标温度的延迟。算法控制使得由于过度焦耳加热而在不可能的生理温度下评估特定处理参数。意义:不可逆电穿孔通常被认为是非热消融模态和温度监测不是标准临床实践的一部分。该研究的结果表明由于暴露于一个微秒的脉冲引起的烧蚀结果可以热介导并取决于局部组织温度。本研究的结果为利用温度控制算法进行了实验的基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号