首页> 外文期刊>Biomedical Engineering, IEEE Transactions on >Microbubble Localization for Three-Dimensional Superresolution Ultrasound Imaging Using Curve Fitting and Deconvolution Methods
【24h】

Microbubble Localization for Three-Dimensional Superresolution Ultrasound Imaging Using Curve Fitting and Deconvolution Methods

机译:三维超分辨率超声成像的微气泡定位使用曲线拟合和反卷积方法

获取原文
获取原文并翻译 | 示例
           

摘要

Superresolution algorithms in ultrasound imaging are attracting the interest of researchers recently due to the ability of these methods to enable enhanced vascular imaging. In this study, two superresolution imaging methods are compared for postprocessing images of microbubbles generated using passive acoustic mapping (PAM) methods with a potential application of three-dimensional (3-D) brain vascular imaging. The first method is based on fitting single bubble images one at a time with a 3-D Gaussian profile to localize the microbubbles and a superresolution image is then formed using the uncertainty of the localization as the standard deviation of the Gaussian profile. The second superresolution method is based on image deconvolution that processes multiframe resolution-limited images iteratively and estimates the intensity at each pixel of the superresolution image without the need for localizing each microbubble. The point spread function is approximated by a Gaussian curve which is similar to the beam response of the hemispherical transducer array used in our experimental setup. The Cramér–Rao Bounds of the two estimation techniques are derived analytically and the performance of these techniques is compared through numerical simulations based on experimental PAM images. For linear and sinusoidal traces, the localization errors between the estimated peaks by the fitting-based method and the actual source locations were 220$pm$10 $mu$m and 210$pm$$mu$m, respectively, as compared to 74$pm$10$mu$m and 59$pm$8$mu$m with the deconvolution-based method. However, in terms of the running time and the computational costs, the curve fitting technique outperforms the deconvolution-based approach.
机译:由于这些方法能够实现增强的血管成像,因此超声成像中的超分辨率算法最近吸引了研究人员的兴趣。在这项研究中,比较了两种超分辨率成像方法对使用被动声学映射(PAM)方法生成的微气泡的后处理图像的潜在作用,该方法可应用于三维(3-D)脑血管成像。第一种方法基于一次将单个气泡图像与3-D高斯轮廓拟合以定位微气泡,然后使用定位的不确定性作为高斯轮廓的标准偏差来形成超分辨率图像。第二种超分辨率方法基于图像反卷积,该图像反卷积可迭代处理多帧分辨率受限制的图像,并且无需定位每个微气泡即可估算超分辨率图像每个像素处的强度。点扩展函数由高斯曲线近似,该曲线类似于我们实验设置中使用的半球形换能器阵列的光束响应。通过分析得出两种估计技术的Cramér-Rao界,并通过基于实验PAM图像的数值模拟比较这些技术的性能。对于线性和正弦曲线,基于拟合的方法估计的峰与实际源位置之间的定位误差为220 n $ pm $ n10 n $ mu $ nm和210 n $ pm $ n5 n $ mu $ nm,分别为74 n <内联公式xmlns:mml = “ http://www.w3.org/1998/Math/MathML ” xmlns:xlink = “ http: // ww w.w3.org/1999/xlink"> $ pm $ n10 n $ mu $ nm和59 n $ pm $ n8 n $ mu $ nm,采用基于反卷积的方法。但是,就运行时间和计算成本而言,曲线拟合技术的性能优于基于反卷积的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号