...
首页> 外文期刊>Biomechanics and Modeling in Mechanobiology >Role of elastin anisotropy in structural strain energy functions of arterial tissue
【24h】

Role of elastin anisotropy in structural strain energy functions of arterial tissue

机译:弹性蛋白各向异性在动脉组织结构应变能函数中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

The vascular wall exhibits nonlinear anisotropic mechanical properties. The identification of a strain energy function (SEF) is the preferred method to describe its complex nonlinear elastic properties. Earlier constituent-based SEF models, where elastin is modeled as an isotropic material, failed in describing accurately the tissue response to inflation–extension loading. We hypothesized that these shortcomings are partly due to unaccounted anisotropic properties of elastin. We performed inflation–extension tests on common carotid of rabbits before and after enzymatic degradation of elastin and applied constituent-based SEFs, with both an isotropic and an anisotropic elastin part, on the experimental data. We used transmission electron microscopy (TEM) and serial block-face scanning electron microscopy (SBFSEM) to provide direct structural evidence of the assumed anisotropy. In intact arteries, the SEF including anisotropic elastin with one family of fibers in the circumferential direction fitted better the inflation–extension data than the isotropic SEF. This was supported by TEM and SBFSEM imaging, which showed interlamellar elastin fibers in the circumferential direction. In elastin-degraded arteries, both SEFs succeeded equally well in predicting anisotropic wall behavior. In elastase-treated arteries fitted with the anisotropic SEF for elastin, collagen engaged later than in intact arteries. We conclude that constituent-based models with an anisotropic elastin part characterize more accurately the mechanical properties of the arterial wall when compared to models with simply an isotropic elastin. Microstructural imaging based on electron microscopy techniques provided evidence for elastin anisotropy. Finally, the model suggests a later and less abrupt collagen engagement after elastase treatment.
机译:血管壁表现出非线性各向异性的机械性能。应变能函数(SEF)的识别是描述其复杂的非线性弹性特性的首选方法。早期的基于弹性成分的SEF模型将弹性蛋白建模为各向同性材料,但未能准确描述组织对充胀-伸展负荷的反应。我们假设这些缺点部分是由于弹性蛋白的各向异性特性无法解释。我们对弹性蛋白进行酶促降解之前和之后对家兔的颈总动脉进行了充气-拉伸试验,并在实验数据上应用了基于各向同性和各向异性的弹性蛋白部分的基于成分的SEF。我们使用透射电子显微镜(TEM)和串行块面扫描电子显微镜(SBFSEM)提供假定各向异性的直接结构证据。在完整的动脉中,SEF包括各向异性弹性蛋白,其在圆周方向上具有一族纤维,比各向同性SEF拟合出更好的膨胀-延伸数据。这通过TEM和SBFSEM成像得到支持,该成像在周向上显示了层间弹性蛋白纤维。在弹性蛋白降解的动脉中,两个SEF在预测各向异性壁行为方面均取得了同样的成功。在装有用于弹性蛋白的各向异性SEF的弹性蛋白酶处理的动脉中,胶原蛋白的吸收要晚于完整的动脉。我们得出的结论是,与仅具有各向同性弹性蛋白的模型相比,具有各向异性弹性蛋白的基于成分的模型可以更准确地表征动脉壁的机械性能。基于电子显微镜技术的显微结构成像为弹性蛋白各向异性提供了证据。最后,该模型表明,在弹性蛋白酶处理后,胶原蛋白的吸收较晚且不突然。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号