首页> 外文期刊>Biological Trace Element Research >Regulation of Redox Signaling by Selenoproteins
【24h】

Regulation of Redox Signaling by Selenoproteins

机译:硒蛋白对氧化还原信号的调节

获取原文
获取原文并翻译 | 示例
           

摘要

The unique chemistry of oxygen has been both a resource and threat for life on Earth for at least the last 2.4 billion years. Reduction of oxygen to water allows extraction of more metabolic energy from organic fuels than is possible through anaerobic glycolysis. On the other hand, partially reduced oxygen can react indiscriminately with biomolecules to cause genetic damage, disease, and even death. Organisms in all three superkingdoms of life have developed elaborate mechanisms to protect against such oxidative damage and to exploit reactive oxygen species as sensors and signals in myriad processes. The sulfur amino acids, cysteine and methionine, are the main targets of reactive oxygen species in proteins. Oxidative modifications to cysteine and methionine can have profound effects on a protein’s activity, structure, stability, and subcellular localization. Non-reversible oxidative modifications (oxidative damage) may contribute to molecular, cellular, and organismal aging and serve as signals for repair, removal, or programmed cell death. Reversible oxidation events can function as transient signals of physiological status, extracellular environment, nutrient availability, metabolic state, cell cycle phase, immune function, or sensory stimuli. Because of its chemical similarity to sulfur and stronger nucleophilicity and acidity, selenium is an extremely efficient catalyst of reactions between sulfur and oxygen. Most of the biological activity of selenium is due to selenoproteins containing selenocysteine, the 21st genetically encoded protein amino acid. The most abundant selenoproteins in mammals are the glutathione peroxidases (five to six genes) that reduce hydrogen peroxide and lipid hydroperoxides at the expense of glutathione and serve to limit the strength and duration of reactive oxygen signals. Thioredoxin reductases (three genes) use nicotinamide adenine dinucleotide phosphate to reduce oxidized thioredoxin and its homologs, which regulate a plethora of redox signaling events. Methionine sulfoxide reductase B1 reduces methionine sulfoxide back to methionine using thioredoxin as a reductant. Several selenoproteins in the endoplasmic reticulum are involved in the regulation of protein disulfide formation and unfolded protein response signaling, although their precise biological activities have not been determined. The most widely distributed selenoprotein family in Nature is represented by the highly conserved thioredoxin-like selenoprotein W and its homologs that have not yet been assigned specific biological functions. Recent evidence suggests selenoprotein W and the six other small thioredoxin-like mammalian selenoproteins may serve to transduce hydrogen peroxide signals into regulatory disulfide bonds in specific target proteins.
机译:至少在过去的24亿年中,独特的氧气化学一直是地球上的资源和生命的威胁。与通过厌氧糖酵解相比,将氧气还原为水可以从有机燃料中提取更多的代谢能。另一方面,部分还原的氧气会与生物分子发生不分皂白的反应,从而导致遗传损害,疾病甚至死亡。在生命的所有三个超级王国中,有机体都已经开发出完善的机制来防止这种氧化损伤,并利用活性氧作为无数过程中的传感器和信号。硫氨基酸,半胱氨酸和蛋氨酸是蛋白质中活性氧的主要目标。半胱氨酸和蛋氨酸的氧化修饰可对蛋白质的活性,结构,稳定性和亚细胞定位产生深远影响。不可逆的氧化修饰(氧化损伤)可能导致分子,细胞和生物体衰老,并成为修复,去除或程序性细胞死亡的信号。可逆的氧化事件可以作为生理状态,细胞外环境,营养供应,代谢状态,细胞周期阶段,免疫功能或感觉刺激的瞬时信号。硒与硫的化学相似性以及更强的亲核性和酸性,因此它是硫与氧之间反应的极高效催化剂。硒的大部分生物活性归因于含有硒代半胱氨酸的硒蛋白,硒代半胱氨酸是第21种遗传编码的蛋白质氨基酸。哺乳动物中最丰富的硒蛋白是谷胱甘肽过氧化物酶(5至6个基因),它们以谷胱甘肽为代价减少过氧化氢和脂质氢过氧化物,并限制活性氧信号的强度和持续时间。硫氧还蛋白还原酶(三个基因)使用烟酰胺腺嘌呤二核苷酸磷酸来减少氧化的硫氧还蛋白及其同源物,从而调节大量的氧化还原信号事件。甲硫氨酸亚砜还原酶B1使用硫氧还蛋白作为还原剂将甲硫氨酸亚砜还原成甲硫氨酸。内质网中的几种硒蛋白参与蛋白质二硫键形成和展开的蛋白质反应信号的调控,尽管尚未确定其确切的生物学活性。自然界中分布最广泛的硒蛋白家族以高度保守的硫氧还蛋白样硒蛋白W及其同源物为代表,这些同源物尚未被赋予特定的生物学功能。最近的证据表明,硒蛋白W和其他六种类似硫氧还蛋白的小型哺乳动物硒蛋白可能将过氧化氢信号转化为特定靶蛋白中的调节性二硫键。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号