...
首页> 外文期刊>Biological Cybernetics >A model of cerebrocerebello-spinomuscular interaction in the sagittal control of human walking
【24h】

A model of cerebrocerebello-spinomuscular interaction in the sagittal control of human walking

机译:人步行矢状面控制中的脑脑脊髓神经肌肉相互作用模型

获取原文
获取原文并翻译 | 示例
           

摘要

A computationally developed model of human upright balance control (Jo and Massaquoi on Biol cybern 91:188–202, 2004) has been enhanced to describe biped walking in the sagittal plane. The model incorporates (a) non-linear muscle mechanics having activation level -dependent impedance, (b) scheduled cerebrocerebellar interaction for control of center of mass position and trunk pitch angle, (c) rectangular pulse-like feedforward commands from a brainstem/ spinal pattern generator, and (d) segmental reflex modulation of muscular synergies to refine inter-joint coordination. The model can stand when muscles around the ankle are coactivated. When trigger signals activate, the model transitions from standing still to walking at 1.5 m/s. Simulated natural walking displays none of seven pathological gait features. The model can simulate different walking speeds by tuning the amplitude and frequency in spinal pattern generator. The walking is stable against forward and backward pushes of up to 70 and 75 N, respectively, and with sudden changes in trunk mass of up to 18%. The sensitivity of the model to changes in neural parameters and the predicted behavioral results of simulated neural system lesions are examined. The deficit gait simulations may be useful to support the functional and anatomical correspondences of the model. The model demonstrates that basic human-like walking can be achieved by a hierarchical structure of stabilized-long loop feedback and synergy-mediated feedforward controls. In particular, internal models of body dynamics are not required.
机译:计算得出的人体直立平衡控制模型(Jo和Massaquoi在Biol cybern 91:188-202,2004年)得到了增强,可以描述两足动物在矢状面中的行走。该模型包含(a)具有依赖于激活水平的阻抗的非线性肌肉力学,(b)计划的小脑小脑相互作用,用于控制质心位置和躯干俯仰角,(c)来自脑干/脊柱的矩形脉冲状前馈命令模式产生器,以及(d)肌肉协同作用的分段反射调制,以细化关节间的协调。当脚踝周围的肌肉被共同激活时,该模型可以站立。触发信号激活后,模型将从静止状态转换为以1.5 m / s的速度行走。模拟的自然行走不会显示出七个病理性步态特征。该模型可以通过调整脊椎模式发生器中的幅度和频率来模拟不同的步行速度。步行时,向前和向后的推力分别高达70 N和75 N是稳定的,并且躯干质量突然变化达18%。检查了模型对神经参数变化的敏感性以及模拟的神经系统病变的预测行为结果。缺陷步态模拟可能有助于支持模型的功能和解剖学对应。该模型表明,基本的类人步行可以通过稳定的长环反馈和协同作用介导的前馈控制的分层结构来实现。特别是,不需要人体动力学的内部模型。

著录项

  • 来源
    《Biological Cybernetics》 |2007年第3期|279-307|共29页
  • 作者

    Sungho Jo; Steve G. Massaquoi;

  • 作者单位

    Department of Electrical Engineering and Computer Science Computer Science and Artificial Intelligence Laboratory Laboratory for Information and Decision Systems Massachusetts Institute of Technology 32 Vassar St. Cambridge MA 02139 USA;

    Department of Electrical Engineering and Computer Science Computer Science and Artificial Intelligence Laboratory Laboratory for Information and Decision Systems Massachusetts Institute of Technology 32 Vassar St. Cambridge MA 02139 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号