...
首页> 外文期刊>Biological Cybernetics >The response of cortical neurons to in vivo-like input current: theory and experiment: II. Time-varying and spatially distributed inputs
【24h】

The response of cortical neurons to in vivo-like input current: theory and experiment: II. Time-varying and spatially distributed inputs

机译:皮质神经元对体内类输入电流的反应:理论与实验:II。时变和空间分布的输入

获取原文
获取原文并翻译 | 示例
           

摘要

The response of a population of neurons to time-varying synaptic inputs can show a rich phenomenology, hardly predictable from the dynamical properties of the membrane’s inherent time constants. For example, a network of neurons in a state of spontaneous activity can respond significantly more rapidly than each single neuron taken individually. Under the assumption that the statistics of the synaptic input is the same for a population of similarly behaving neurons (mean field approximation), it is possible to greatly simplify the study of neural circuits, both in the case in which the statistics of the input are stationary (reviewed in La Camera et al. in Biol Cybern, 2008) and in the case in which they are time varying and unevenly distributed over the dendritic tree. Here, we review theoretical and experimental results on the single-neuron properties that are relevant for the dynamical collective behavior of a population of neurons. We focus on the response of integrate-and-fire neurons and real cortical neurons to long-lasting, noisy, in vivo-like stationary inputs and show how the theory can predict the observed rhythmic activity of cultures of neurons. We then show how cortical neurons adapt on multiple time scales in response to input with stationary statistics in vitro. Next, we review how it is possible to study the general response properties of a neural circuit to time-varying inputs by estimating the response of single neurons to noisy sinusoidal currents. Finally, we address the dendrite–soma interactions in cortical neurons leading to gain modulation and spike bursts, and show how these effects can be captured by a two-compartment integrate-and-fire neuron. Most of the experimental results reviewed in this article have been successfully reproduced by simple integrate-and-fire model neurons.
机译:一群神经元对时变的突触输入的反应可以显示出丰富的现象学,这很难从膜固有时间常数的动力学特性中预测到。例如,处于自发活动状态的神经元网络可以比单独获取的每个单个神经元明显更快地做出反应。假设对于行为相似的神经元群体,突触输入的统计量是相同的(平均场近似),则在输入的统计量为2的情况下,可以大大简化神经回路的研究。固定(在La Camera等人的综述中,见Biol Cyber​​n,2008年),并且它们是随时间变化的并且在树状树上分布不均匀。在这里,我们审查与神经元群体的动态集体行为有关的单神经元性质的理论和实验结果。我们专注于整合发射神经元和真正的皮质神经元对持久的,嘈杂的,体内样固定输入的响应,并展示该理论如何预测所观察到的神经元文化的节律活动。然后,我们展示了皮质神经元如何在多个时间尺度上适应体外稳态统计输入的响应。接下来,我们回顾如何通过估计单个神经元对噪声正弦电流的响应来研究神经电路对时变输入的一般响应特性。最后,我们解决了皮质神经元中的枝晶-索马相互作用,从而导致增益调制和尖峰爆发,并展示了如何由两室积分并发射神经元捕获这些效应。本文中回顾的大多数实验结果已通过简单的整合并发射模型神经元成功复制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号