...
首页> 外文期刊>Biochemistry >Role of Zinc in Isoform-Selective Inhibitor Binding to Neuronal Nitric Oxide Synthase,
【24h】

Role of Zinc in Isoform-Selective Inhibitor Binding to Neuronal Nitric Oxide Synthase,

机译:锌在同工型选择性抑制剂与神经元一氧化氮合酶结合中的作用,

获取原文
获取原文并翻译 | 示例

摘要

In previous studies [Delker, S. L., et al. (2010), J. Am. Chem. Soc. 132, 5437-5442], we determinednthe crystal structures of neuronal nitric oxide synthase (nNOS) in complex with nNOS-selective chiralnpyrrolidine inhibitors, designed to have an aminopyridine group bound over the heme where it cannelectrostatically interact with the conserved active site Glu residue. However, in addition to the expectednbindingmode with the (S,S)-cis inhibitors, an unexpected “flipped” orientation was observed for the (R,R)-cisnenantiomers. In the flipped mode, the aminopyridine extends out of the active site where it interacts with onenheme propionate. This prompted us to design and synthesize symmetric “double-headed” inhibitors with annaminopyridine at each end of a bridging ring structure [Xue, F., Delker, S. L., Li, H., Fang, J., Jamal, J.,nMartu0001 asek, P., Roman, L. J., Poulos, T. L., and Silverman, R. B. Symmetric double-headed aminopyridines, annovel strategy for potent and membrane-permeable inhibitors of neuronal nitric oxide synthase. J. Med.nChem. (submitted for publication)]. One aminopyridine should interact with the active site Glu and the othernwith the heme propionate. Crystal structures of these double-headed aminopyridine inhibitors in complexesnwith nNOS show unexpected and significant protein and heme conformational changes induced by inhibitornbinding that result in removal of the tetrahydrobiopterin (H4B) cofactor and creation of a new Zn2þ site.nThese changes are due to binding of a second inhibitor molecule that results in the displacement of H4B andnthe placement of the inhibitor pyridine group in position to serve as a Zn2þ ligand together with Asp,His, andna chloride ion. Binding of the second inhibitormolecule and generation of the Zn2þ site do not occur in eNOS.nStructural requirements for creation of the new Zn2þ site in nNOS were analyzed in detail. These observationsnopen the way for the potential design of novel inhibitors selective for nNOS.
机译:在先前的研究中[Delker,S.L。,等。 (2010),J。Am。化学Soc。 132,5437-5442],我们确定了神经元一氧化氮合酶(nNOS)与nNOS选择性手性吡咯烷酮抑制剂的复合物的晶体结构,该抑制剂设计为在血红素上结合有一个氨基吡啶基团,在那里它可以与保守的活性位点Glu残基发生静电相互作用。但是,除了与(S,S)-顺式抑制剂的预期结合方式外,对于(R,R)-顺式对映体也观察到了意外的“翻转”方向。在翻转模式下,氨基吡啶从活性位点伸出,在活性位点它与丙戊酸血红素相互作用。这促使我们设计和合成对称的“双头”抑制剂,其在桥环结构的每个末端均带有氨基氨基吡啶[Xue,F.,Delker,SL,Li,H.,Fang,J.,Jamal,J.,nMartu0001 asek,P.,Roman,LJ,Poulos,TL和Silverman,RB对称双头氨基吡啶,是神经元一氧化氮合酶有效和膜渗透性抑制剂的annovel策略。医学化学杂志(提交出版)]。一种氨基吡啶应与活性位点Glu相互作用,另一种应与丙酸血红素相互作用。这些双头氨基吡啶抑制剂与nNOS的复合物的晶体结构显示出由抑制剂结合引起的意想不到的显着蛋白质和血红素构象变化,从而导致去除了四氢生物蝶呤(H4B)辅因子并产生了新的Zn2þ位点.n这些变化是由于第二个抑制剂分子导致H4B的置换和抑制剂吡啶基团的位置,与Asp,His和NaCl离子一起用作Zn2 +配体。在eNOS中不会发生第二个抑制剂分子的结合和Zn2 +位点的产生。详细分析了在nNOS中创建新Zn2 +位点的结构要求。这些观察结果为选择性设计对nNOS的新型抑制剂的潜在设计开辟了道路。

著录项

  • 来源
    《Biochemistry 》 |2010年第51期| p.10803-10810| 共8页
  • 作者单位

    §Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California,Irvine, California 92697-3900, United States, and ) Department of Chemistry, Department of Molecular Biosciences,Center for Molecular Innovation and Drug Discovery, and Chemistry of Life Processes Institute, Northwestern University,2145 Sheridan Road, Evanston, Illinois 60208-3113, United States.^Current address: Department of Chemistry,University of Louisiana, Lafayette, LA 70504.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号