...
首页> 外文期刊>IEEE transactions on automation science and engineering >Finite-Time PLOS-Based Integral Sliding-Mode Adaptive Neural Path Following for Unmanned Surface Vessels With Unknown Dynamics and Disturbances
【24h】

Finite-Time PLOS-Based Integral Sliding-Mode Adaptive Neural Path Following for Unmanned Surface Vessels With Unknown Dynamics and Disturbances

机译:基于有限时间PLOS的整体滑模自适应神经路径,适用于未知动态和扰动的无人船

获取原文
获取原文并翻译 | 示例
           

摘要

Unmanned surface vessels (USVs) are supposed to be able to adapt unstructured environments by means of multi-sensor active perception without any human interference, and high-accuracy path following is achieved for USVs by effective control strategies and intelligent devices of e-navigation. This paper proposes a finite-time predictor line-of-sight (LOS)-based integral sliding-mode adaptive neural (FPISAN) scheme for the path following of USVs in the presence of unknown dynamics and external disturbances, which copies with the problem of merging with the kinematic level and the kinetic level of USVs. From the point of view of USVs' practical engineering, the inertia matrix of USVs maintains nonzero off-diagonal. In order to ensure that USVs can converge to and follow a defined path, a novel LOS-based guidance law that can acquire sideslip angles by error predictors within a finite time is presented, called finite-time predictor-based LOS (FPLOS). Then, the path-following control laws are designed by combining the neural network (NN) technique with the integral sliding-mode method, where radial basis function NN (RBFNN) is applied to approximate lumped unknown dynamics induced by nonparametric uncertainties and external disturbances. The theoretical analysis verifies that the path-following guidance-control system of USVs is semiglobally uniformly ultimately bounded (SGUUB) with the aid of Lyapunov stability theory. The effectiveness and performance of this presented scheme are illustrated by simulation experiments with the comparison. Note to Practitioners - The design of heading guidance laws and path-following control laws for path following of USVs subject to unknown dynamics and external disturbances is a critical problem, which affects the development of USVs. This problem associated with practical engineering of USVs due to the actual navigation environment that is complex, diversified, and highly unstructured. This paper presents a wholly tight strategy to compensate for unknown sideslip angles and approximate lumped unknown dynamics. Hence, an effective scheme being denoted FPISAN mentioned above is developed for path following of USVs.
机译:无人水面舰艇(USV)被认为能够通过多传感器主动感知而无人为干扰地适应非结构​​化环境,并且通过有效的控制策略和智能的电子导航设备可以实现USV的高精度路径跟踪。本文针对存在未知动力学和外部干扰的USV的路径跟踪,提出了一种基于有限时预测器视线(LOS)的积分滑模自适应神经(FPISAN)方案,该方案具有以下问题:与USV的运动水平和动力学水平合并。从USV的实际工程角度来看,USV的惯性矩阵保持非零的非对角线。为了确保USV可以收敛并遵循定义的路径,提出了一种新颖的基于LOS的制导律,该法则可以在有限时间内通过误差预测器获取侧滑角,称为基于有限时间预测器的LOS(FPLOS)。然后,通过将神经网络(NN)技术与积分滑模方法相结合来设计路径遵循控制律,其中径向基函数NN(RBFNN)用于近似估计由非参数不确定性和外部干扰引起的集总未知动力学。理论分析证明,借助Lyapunov稳定性理论,USV的路径跟踪制导控制系统是半全局一致的最终有界(SGUUB)。通过仿真实验并进行了比较,说明了该方案的有效性和性能。给从业者的注意-受到未知动力和外部干扰的无人飞行器的航迹跟踪法则和航迹跟踪控制法则的设计是一个关键问题,影响着无人飞行器的发展。由于实际的导航环境复杂,多样化且高度非结构化,因此该问题与USV的实际工程相关。本文提出了一种完全严密的策略来补偿未知的侧滑角和近似的集总未知动力学。因此,针对USV的路径跟踪,开发了一种有效的方案,上述方案被称为FPISAN。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号