首页> 外文期刊>Atmospheric environment >Photochemistry in the arctic free troposphere: NO_x budget and the role of odd nitrogen reservoir recycling
【24h】

Photochemistry in the arctic free troposphere: NO_x budget and the role of odd nitrogen reservoir recycling

机译:北极自由对流层中的光化学:NO_x预算和奇数氮储层再循环的作用

获取原文
获取原文并翻译 | 示例
           

摘要

The budget of nitrogen oxides (NO_x) in the arctic free troposphere is calculated with a constrained photochemical box model using aircraft observations from the Tropospheric O_3 Production about the Spring Equinox (TOPSE) campaign between February and May. Peroxyacetic nitric anhydride (PAN) was observed to be the dominant odd nitrogen species (NO_y) in the arctic free troposphere and showed a pronounced seasonal increase in mixing ratio. When constrained to observed acetaldehyde (CH_3CHO) mixing ratios, the box model calculates unrealistically large net NO_x losses due to PAN formation (62 pptv/day for May, 1-3 km). Thus, given our current understanding of atmospheric chemistry, these results cast doubt on the robustness of the CH_3CHO observations during TOPSE. When CH_3CHO was calculated to steady state in the box model, the net NO_x loss to PAN was of comparable magnitude to the net NO_x loss to HNO_3 (NO_2 reaction with OH) for spring conditions. During the winter, net NO-x loss due to N_2O_5 hydrolysis dominates other NO_x loss processes and is near saturation with respect to further increases in aerosol surface area concentration. NO_x loss due to N_2O_5 hydrolysis is sensitive to latitude and month due to changes in diurnal photolysis (sharp day-night transitions in winter to continuous sun in spring for the arctic). Near NO_x sources, HNO_4 is a net sink for NO_x; however, for more aged air masses HNO_4 is a net source for NO_x, largely countering the NO_x loss to PAN, N_2O_5 and HNO_3 Overall, HNO_4 chemistry impacts the timing of NO_x decay and O_3 production; however, the cumulative impact on O_3 and NO_x mixing ratios after a 20-day trajectory is minimal.
机译:北极自由对流层中氮氧化物(NO_x)的预算,是使用2月至5月春季对流层O_3生产有关春季春分(TOPSE)运动的飞机观测结果,通过约束光化学箱模型计算得出的。观察到过氧乙酸一酸酐(PAN)是北极自由对流层中的主要奇数氮类(NO_y),并且显示出明显的季节性混合比增加。当受制于观察到的乙醛(CH_3CHO)混合比时,该盒模型计算出由于PAN的形成而产生的不现实的大净NO_x损失(5月1-3公里每天62 pptv /天)。因此,鉴于我们目前对大气化学的理解,这些结果使人们对TOPSE期间CH_3CHO观测值的鲁棒性产生怀疑。当在盒模型中计算CH_3CHO到稳态时,在春季条件下,PAN的净NO_x损失与HNO_3的净NO_x损失(与OH进行NO_2反应)相当。在冬季,由于N_2O_5水解引起的净NOx损失占其他NO_x损失过程的主导,并且就气溶胶表面积浓度的进一步增加而言接近饱和。 N_2O_5水解引起的NO_x损失对昼夜光解的变化(北极地区白天从冬日到夏日的急剧转变,到春季连续太阳)的变化对纬度和月份敏感。在NO_x源附近,HNO_4是NO_x的净汇。但是,对于更多的老化空气质量,HNO_4是NO_x的净来源,很大程度上抵消了NO_x损失给PAN,N_2O_5和HNO_3的总体影响。但是,在20天的轨迹之后,对O_3和NO_x混合比的累积影响很小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号