首页> 外文期刊>Atmospheric environment >Statistical modelling of spatial and temporal variation in urban particle number size distribution at traffic and background sites
【24h】

Statistical modelling of spatial and temporal variation in urban particle number size distribution at traffic and background sites

机译:交通与背景网站城市粒子数尺寸分布的空间和时间变化的统计建模

获取原文
获取原文并翻译 | 示例
           

摘要

Ultrafine particles (UFP) pose a risk to human health, but due to the multitude of sources and fast transformation in the urban atmosphere, quantifying the exposure is challenging. Furthermore, physical properties of aerosol particles depend on the particle size. Statistical models are used to quantify spatial and temporal variation of UFP, but rarely used for particle number size distribution (PNSD). The aim of the study was to establish an interpretable statistical model capturing spatial and temporal variation of urban PNSDs using generalized additive models (GAM) and multivariate adaptive regression spline models (MARS). These algorithms automatically fit interpretable, non-linear marginal function to represent relationships between explanatory and response variables. Three different approaches were evaluated to cope with the multidimensionality of the PNSD data (20-800 nm, 34 size bins): a generalized additive model for the particle number concentration (PNC) of every individual size bin (GAM(bins)), a generalized additive model for the parameters of the PNSD function (GAM(pams)) and a multivariate adaptive regression spline model for the PNC of every size bin (MARS(bins)). Reanalysis data of meteorological quantities, urban geometry parameters and approximated traffic counts were used as explanatory variables. Marginal functions of the final models could be attributed to major processes that contribute to spatial and temporal variation of the PNSD, i.e. emissions from vehicle traffic, transport, dilution, accumulation, deposition and new particle formation. Cross-validation coefficients of determination ranged between 0.27 and 0.48 for most size bins. Nonetheless, the modelling approaches resulted in similar root mean square errors (RMSE) and mean absolute error (MAE). Though direct spatial transferability of the models is limited, the presented approaches may be useful for estimating ambient exposure to particles.
机译:超细颗粒(UFP)对人体健康构成了风险,而是由于城市气氛中的众多来源和快速转换,量化暴露是挑战性的。此外,气溶胶颗粒的物理性质取决于粒度。统计模型用于量化UFP的空间和时间变化,但很少用于粒子数尺寸分布(PNSD)。该研究的目的是建立一种可解释的统计模型,使用广义添加剂模型(GAM)和多变量自适应回归花键模型(MARS)来建立城市PNSD的空间和时间变化。这些算法自动拟合可解释的非线性边缘函数,以表示解释性和响应变量之间的关系。评估三种不同的方法以应对PNSD数据的多程度(20-800nm,34尺寸箱):每个单独尺寸箱(GAM(箱)),a的粒子数浓度(PNC)的广义添加剂模型PNSD函数参数的广义添加剂模型(GAM(PAMS))和每个尺寸箱PNC的多变量自适应回归样条模型(MARS(箱))。气象量的重新分析数据,城市几何参数和近似交通计数用作解释变量。最终模型的边缘功能可归因于有助于PNSD的空间和时间变化的主要过程,即车辆交通,运输,稀释,积累,沉积和新颗粒形成的排放。对于大多数箱子,测定的交叉验证系数范围为0.27和0.48。尽管如此,建模方法导致类似的根均方误差(RMSE)和平均绝对误差(MAE)。尽管模型的直接空间可转换性是有限的,但是所提出的方法可用于估计对颗粒的环境暴露。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号