首页> 外文期刊>The Astrophysical journal >A NOVEL ITERATIVE SCHEME FOR THE VERY FAST AND ACCURATE SOLUTION OF NON-LTE RADIATIVE TRANSFER PROBLEMS
【24h】

A NOVEL ITERATIVE SCHEME FOR THE VERY FAST AND ACCURATE SOLUTION OF NON-LTE RADIATIVE TRANSFER PROBLEMS

机译:解决非LTE辐射传输问题的非常快速和精确的新迭代方案

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Iterative schemes based on Gauss-Seidel (G-S) and optimal successive overrelaxation (SOR) iteration are shown to provide a dramatic increase in the speed with which non-LTE radiation transfer (RT) problems can be solved. The convergence rates of these new RT methods are identical to those of upper triangular nonlocal approximate operator splitting techniques, but the computing time per iteration and the memory requirements are similar to those of a local operator splitting method. In addition to these properties, both methods are particularly suitable for multidimensional geometry, since they neither require the actual construction of nonlocal approximate operators nor the application of any matrix inversion procedure. Compared with the currently used Jacobi technique, which is based on the optimal local approximate operator (see Olson, Auer, & Buchler 1986), the G-S method presented here is faster by a factor 2. It gives excellent smoothing of the high-frequency error components, which makes it the iterative scheme of choice for multigrid radiative transfer. This G-S method can also be suitably combined with standard acceleration techniques to achieve even higher performance. Although the convergence rate of the optimal SOR scheme developed here for solving non-LTE RT problems is much higher than G-S, the computing time per iteration is also minimal, i.e., virtually identical to that of a local operator splitting method. While the conventional optimal local operator scheme provides the converged solution after a total CPU time (measured in arbitrary units) approximately equal to the number n of points per decade of optical depth, the time needed by this new method based on the optimal SOR iterations is only n~(1/2)/2(2~(1/2)). This method is competitive with those that result from combining the above-mentioned Jacobi and G-S schemes with the best acceleration techniques. Contrary to what happens with the local operator splitting strategy currently in use, these novel methods remain effective even under extreme non-LTE conditions in very fine grids.
机译:示出了基于高斯-赛德尔(G-S)和最佳连续超松弛(SOR)迭代的迭代方案,可以极大地提高解决非LTE辐射传输(RT)问题的速度。这些新的RT方法的收敛速度与上三角非局部近似运算符拆分技术的收敛速度相同,但是每次迭代的计算时间和内存需求与局部运算符拆分方法的相似。除了这些特性之外,这两种方法都特别适用于多维几何,因为它们既不需要实际构造非局部近似算符,也不需要应用任何矩阵求逆过程。与当前使用的基于最佳局部近似算子的Jacobi技术相比(参见Olson,Auer和Buchler 1986),此处介绍的GS方法的速度提高了2倍。它可以出色地平滑高频误差组件,这使其成为多网格辐射传输的迭代选择方案。此G-S方法还可以与标准加速技术适当地组合以实现更高的性能。尽管此处开发的用于解决非LTE RT问题的最佳SOR方案的收敛速度远高于G-S,但每次迭代的计算时间也很短,即,与本地运营商拆分方法几乎相同。尽管传统的最佳局部算子方案在总CPU时间(以任意单位衡量)之后等于每十倍光学深度的n个点的数量n之后提供了收敛的解决方案,但是这种基于最佳SOR迭代的新方法所需的时间为仅n〜(1/2)/ 2(2〜(1/2))。该方法与将上述Jacobi和G-S方案与最佳加速技术相结合所产生的方法具有竞争力。与当前使用的本地运营商拆分策略发生的情况相反,这些新颖的方法即使在非常精细的网格中的极端非LTE条件下也仍然有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号