首页> 外文期刊>The Astrophysical journal >TIME-DEPENDENT SIMULATION OF OBLIQUE MHD COSMIC-RAY SHOCKS USING THE TWO-FLUID MODEL
【24h】

TIME-DEPENDENT SIMULATION OF OBLIQUE MHD COSMIC-RAY SHOCKS USING THE TWO-FLUID MODEL

机译:两种流体模型对斜MHD宇宙射线激波的时效模拟

获取原文
获取原文并翻译 | 示例
       

摘要

Using a new, second-order accurate numerical method we present dynamical simulations of oblique MHD cosmic-ray (CR)-modified plane shock evolution. Most of the calculations are done with a two-fluid model for diffusive shock acceleration, but we provide also comparisons between a typical shock computed that way against calculations carried out using the more complete, momentum-dependent, diffusion-advection equation. We also illustrate a test showing that these simulations evolve to dynamical equilibra consistent with previously published steady state analytic calculations for such shocks. In order to improve understanding of the dynamical role of magnetic fields in shocks modified by CR pressure we have explored for time asymptotic states the parameter space of upstream fast mode Mach number, M_f, and plasma β. We compile the results into maps of dynamical steady state CR acceleration efficiency, ε_c. Since the models are simplifications, such maps should not be used to predict quantitatively ε_c in real shocks; however, they are internally consistent, so that they can enable us to compare various competing dynamical effects. The maps, along with additional numerical experiments, show that ε_c is reduced through the action of compressive work on tangential magnetic fields in CR-MHD shocks. Thus ε_c in low β, moderate M_f shocks tends to be smaller in quasi-perpendicular shocks than it would be for high β shocks of the same M_f. This result supports earlier conclusions that strong, oblique magnetic fields inhibit diffusive shock acceleration. For quasi-parallel shocks with β < 1, on the other hand, ε_c seems to be increased at a given M_f when compared to high β shocks. The apparent contradiction to the first conclusion results, however, from the fact that for small β quasi-parallel shocks, the fast mode Mach number is not a good measure of compression through the shock. That is better reflected in the sonic Mach number, which is greater in these instances. Acceleration efficiencies for high and low β having comparable sonic Mach numbers are more similar. Time evolution of CR-MHD shocks is qualitatively similar to CR-gasdynamical shocks. However, several potentially interesting differences are apparent. We have run simulations using constant, and nonisotropic, obliquity (and hence spatially) dependent forms of the diffusion coefficient κ. Comparison of the results shows that while the final steady states achieved are the same in each case, the history of CR-MHD shocks can be strongly modified by variations in κ and, therefore, in the acceleration timescale. Also, the coupling of CR and MHD in low β, oblique shocks substantially influences the transient density spike that forms in strongly CR-modified shocks. We find that inside the density spike a MHD slow mode wave can be generated that eventually steepens into a shock. A strong shear layer develops within the density spike, driven by MHD stresses. We conjecture that currents in the shear layer could, in nonplanar flows, result in enhanced particle accretion through drift acceleration.
机译:使用一种新的二阶精确数值方法,我们提出了倾斜的MHD宇宙射线(CR)修正的平面冲击演化的动力学模拟。大多数计算是通过扩散扩散激波的双流体模型完成的,但我们还提供了以这种方式计算出的典型冲击与使用更完整的,依赖于动量的扩散对流方程进行的计算之间的比较。我们还说明了一个测试,该测试表明这些模拟演变为动态平衡,与先前针对此类冲击的稳态分析计算一致。为了更好地理解磁场在CR压力作用下的冲击中的动力学作用,我们针对时间渐近状态探索了上游快速模式马赫数,M_f和等离子体β的参数空间。我们将结果编译成动态稳态CR加速效率ε_c的映射。由于模型是简化的,因此不应使用此类映射来定量预测实际冲击中的ε_c;但是,它们在内部是一致的,因此它们可以使我们比较各种竞争的动力学效果。这些图以及其他数值实验表明,通过压缩功对CR-MHD冲击中切向磁场的作用,ε_c减小。因此,在低β冲击中,中等M_f冲击的ε_c趋于小于在相同M_f的高β冲击中的冲击。该结果支持了较早的结论,即强的倾斜磁场会抑制扩散冲击加速。另一方面,对于β<1的准平行冲击,与高β冲击相比,在给定的M_f下ε_c似乎增加了。然而,与第一个结论显然存在矛盾,这是因为对于小的β准平行冲击,快速模式马赫数并不是通过冲击进行压缩的良好度量。声马赫数更好地反映了这一点,在这些情况下更大。具有可比的声马赫数的高和低β的加速效率更加相似。 CR-MHD冲击的时间演变在质量上与CR气动力冲击相似。但是,一些潜在的有趣差异是显而易见的。我们使用恒定且非各向同性的,倾斜的(因而在空间上)相关的扩散系数κ形式进行了模拟。结果比较表明,虽然每种情况下最终达到的稳态都是相同的,但CR-MHD冲击的历史可以通过κ的变化以及因此在加速时间范围内的变化而被强烈地修改。同样,在低β斜向冲击中CR和MHD的耦合会显着影响在强CR修饰的冲击中形成的瞬态密度峰值。我们发现,在密度峰值内部会产生MHD慢模式波,最终会变陡成冲击波。在MHD应力的驱动下,密度峰值内会形成一个强大的剪切层。我们推测,在非平面流动中,剪切层中的电流可能会通过漂移加速而导致颗粒积聚增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号