首页> 外文期刊>The Astrophysical journal >NONLINEAR DAMPING OF OSCILLATIONS IN TIDAL-CAPTURE BINARIES
【24h】

NONLINEAR DAMPING OF OSCILLATIONS IN TIDAL-CAPTURE BINARIES

机译:潮汐捕获双线性振动的非线性阻尼

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We calculate the damping of quadrupole f- and low-order g-modes (primary modes) by nonlinear coupling to other modes of the star. Primary modes destabilize high-degree g-modes of half their frequency (daughter modes) by 3-mode coupling in radiative zones. For Sun-like stars, the growth time ≡ η~(-1) ≈ 4E_(0,42)~(-1/2) days, where E_(0,42) is the initial energy of the primary mode in units of 10~(42) ergs, and the number of daughter modes N ~ 10~(10)E_(0,42)~(5/4). The growth rate is approximately equal to the angular frequency of the primary mode times its dimensionless radial amplitude, δR/R_* ≈ 0.002E_(0,42)~(1/2). Although the daughter modes are limited by their own nonlinearities, collectively they absorb most of the primary mode's energy after a time ~10η~(-1) provided E_0 > 10~(40) ergs. This is orders of magnitude smaller than usual radiative damping time. In fact, nonlinear mode interaction may be the dominant damping process if E_0 approx> 10~(37) ergs. These results have obvious application to tidally captured main-sequence globular cluster stars of mass ≥ 0.5 solar mass; the tidal energy is dissipated in the radiative core of the star in about a month, which is less than the initial orbital period. Nonlinear mode coupling is a less efficient damping process for fully convective stars, which lack g-modes. In convective stars, most of the tidal energy is in the quadrupole f-modes, which nonresonantly excite high-order p-modes of degree 0, 2, and 4. The resultant short-wavelength waves are more efficiently dissipated. The nonlinear damping time for f-modes is shown to be proportional to 1/E_0; this damping time is about 30 days for E_0 ≈ 10~(45) ergs expected in tidal captures. However, at such a large energy the system is very nonlinear: 4-mode and higher order couplings are as important as 3-mode couplings.
机译:我们通过与恒星其他模式的非线性耦合来计算四极f和低阶g模式(主模式)的阻尼。初级模式通过辐射区域中的3模式耦合破坏了其频率一半的高g模式(子模式)的稳定性。对于类太阳恒星,其生长时间timeη〜(-1)≈4E_(0,42)〜(-1/2)天,其中E_(0,42)是主模的初始能量,单位为10〜(42)ergs,子模式数N〜10〜(10)E_(0,42)〜(5/4)。增长率大约等于主模的角频率乘以其无量纲的径向振幅δR/ R_ *≈0.002E_(0,42)〜(1/2)。尽管子模式受其自身非线性的限制,但如果E_0> 10〜(40)ergs,它们会在约10η〜(-1)的时间后吸收大部分主模式的能量。这比通常的辐射衰减时间小几个数量级。实际上,如果E_0大约> 10〜(37)ergs,则非线性模式相互作用可能是主导的阻尼过程。这些结果对潮汐捕获的质量≥0.5太阳质量的主序球状星团有明显的应用。潮汐能在大约一个月内消散在恒星的辐射核心中,这比初始轨道周期要短。对于缺少g模式的全对流星,非线性模式耦合是效率较低的阻尼过程。在对流星中,大部分潮汐能处于四极f模式,这非共振地激发了0、2和4级的高阶p模式。由此产生的短波被更有效地耗散了。图中显示了f模式的非线性阻尼时间与1 / E_0成正比。对于潮汐捕获中预期的E_0≈10〜(45)erg,该阻尼时间约为30天。但是,在如此大的能量下,系统是非常非线性的:4模和高阶耦合与3模耦合一样重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号