首页> 外文期刊>The Astrophysical journal >THE INVERSION OF ELECTRON TIME-OF-FLIGHT DISTANCES FROM HARD X-RAY TIME DELAY MEASUREMENTS
【24h】

THE INVERSION OF ELECTRON TIME-OF-FLIGHT DISTANCES FROM HARD X-RAY TIME DELAY MEASUREMENTS

机译:硬X射线时间延迟测量值反演电子飞行时间距离

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The electron time-of-flight distance l between the acceleration site and the chromosphere can be measured during solar flares from energy-dependent hard X-ray (HXR) time delays τ(ε), based on the applicability of the thick-target model. The determination of the path length l represents an inversion problem because the time-dependent electron injection spectrum at the acceleration site, N(E, t, x = 0), is retarded by the propagation time t~(prop)(E) = l/v(E) at the thick-target site, i.e., N(E, t, x = l) = N[E, t — t~(prop)(E), x = 0], and has to be convolved with the bremsstrahlung cross section σ(ε, E) and the instrumental detector response function R_i(ε) to reproduce the observed HXR time profiles I(ε_i, t) (in different detector channels i), from which the time delay differences τ(ε_i) — τ(ε_j) can be measured. In this study, we solve this inversion problem by numerical forward integration of time dependent electron injection spectra N(E, t) with Gaussian pulse shapes to obtain the convolved time-dependent HXR spectra I(ε, t), using specific detector response functions from the Burst and Transient Source Experiment/Compton Gamma Ray Observatory and the Hard X-Ray Burst Spectrometer/Solar Maximum Mission. We find that the timing of HXR pulses can be accurately represented with the (monoenergetic) photon energy ε_i that corresponds to the median of the channel count spectra C_i(ε) = I(ε)R_i(ε). We compute numerical conversion factors q_E(ε, γ, E_0) that permit the conversion of the timing of photon energies ε_i(t) (for a power-law spectrum with slope γ and upper cutoff energy E_0) into electron energies E_i(t) = q_E ε_i(t), from which kinematic parameters can be fitted to determine the electron time-of-flight path length l. We test the inversion procedure with numeric simulations and demonstrate that the inversion is accurate within σ_l/l approx< 1% for noise-free data. This inversion procedure is applied to the Masuda flare (in this volume) to localize the electron acceleration region.
机译:基于厚目标模型的适用性,可以根据能量依赖的硬X射线(HXR)时间延迟τ(ε)来测量太阳耀斑期间加速点与色球之间的电子飞行时间距离l 。路径长度l的确定代表了一个反演问题,因为在加速位置N(E,t,x = 0)的时间相关电子注入光谱被传播时间t〜(prop)(E)=在厚目标位置的l / v(E),即N(E,t,x = l)= N [E,t — t〜(prop)(E),x = 0],并且必须为与the致辐射横截面σ(ε,E)和仪器探测器响应函数R_i(ε)卷积以重现观察到的HXR时间轮廓I(ε_i,t)(在不同的探测器通道i中),从中得出时延差τ (ε_i)—τ(ε_j)可以测量。在这项研究中,我们通过使用特定的探测器响应函数,通过对时间相关的电子注入光谱N(E,t)与高斯脉冲形状进行数值前向积分,以获得卷积的时间相关的HXR光谱I(ε,t),来解决此反演问题。来自爆炸和瞬态源实验/康普顿伽玛射线天文台和硬X射线爆炸光谱仪/太阳能最大任务。我们发现,HXR脉冲的时序可以用(单能)光子能量ε_i准确表示,该能量对应于通道计数谱C_i(ε)= I(ε)R_i(ε)的中值。我们计算数值转换因子q_E(ε,γ,E_0),该转换因子允许将光子能量ε_i(t)的定时(对于斜率γ和上截止能量E_0的幂律谱)转换为电子能量E_i(t) = q_Eε_i(t),由此可以拟合运动学参数以确定电子飞行时间路径长度l。我们用数值模拟测试了反演程序,并证明了对于无噪声数据,反演在σ_1/ l约<1%的范围内是准确的。此反演程序应用于增田耀斑(在此体积中)以定位电子加速区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号