...
首页> 外文期刊>The Astrophysical journal >MAGNETOROTATIONALLY DRIVEN GALACTIC TURBULENCE AND THE FORMATION OF GIANT MOLECULAR CLOUDS
【24h】

MAGNETOROTATIONALLY DRIVEN GALACTIC TURBULENCE AND THE FORMATION OF GIANT MOLECULAR CLOUDS

机译:地磁驱动的银河湍流和巨型分子团的形成

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Giant molecular clouds (GMCs), where most stars form, may originate from self-gravitating instabilities in the interstellar medium. Using local three-dimensional magnetohydrodynamic simulations, we investigate ways in which galactic turbulence associated with the magnetorotational instability (MRI) may influence the formation and properties of these massive, self-gravitating clouds. Our disk models are vertically stratified with both gaseous and stellar gravity and subject to uniform shear corresponding to a flat rotation curve. Initial magnetic fields are assumed to be weak and purely vertical. For simplicity, we adopt an isothermal equation of state with sound speed c_s = 7 km s~(-1). We find that MRI-driven turbulence develops rapidly, with the saturated-state Shakura & Sunyaev parameter α ~ 0.15-0.3 dominated by Maxwell stresses. Many of the dimensionless characteristics of the turbulence (e.g., the ratio of the Maxwell to Reynolds stresses) are similar to results from previous MRI studies of accretion disks, hence insensitive to the degree of vertical disk compression, shear rate, and the presence of self-gravity? Although self-gravity enhances fluctuation amplitudes slightly. The density-weighted velocity dispersions in non- or weakly self-gravitating disks are σ_x ~ σ_y ~ (0.4-0.6)c_s and σ_z ~ (0.2-0.3)c_s, suggesting that MRI can contribute significantly to the observed level of galactic turbulence. The saturated-state magnetic field strength B ~ 2 μG is similar to typical galactic values. When self-gravity is strong enough, MRI-driven high-amplitude density perturbations are swing-amplified to form Jeans-mass (~10~7 solar mass) bound clouds. Compared to previous unmagnetized or strongly magnetized disk models, the threshold for nonlinear instability in the present models occurs for surface densities at least 50% lower, corresponding to the Toomre parameter Q_(th) ~ 1.6. We present evidence that self-gravitating clouds like GMCs formed under conditions similar to our models can lose much of their original spin angular momenta by magnetic braking, preferentially via fields threading nearly perpendicularly to their spin axes. Finally, we discuss the present results within the larger theoretical and observational context, outlining directions for future study.
机译:大多数恒星形成的巨型分子云(GMC)可能源于星际介质中的自引力不稳定性。使用局部三维磁流体动力学模拟,我们研究了与磁旋转不稳定性(MRI)相关的银河湍流可能影响这些巨大的自重云的形成和性质的方式。我们的圆盘模型在垂直方向上均具有气态和恒星重力分层,并受到与平坦旋转曲线相对应的均匀剪切力。初始磁场被认为是弱的并且纯粹是垂直的。为简单起见,我们采用等温状态方程,其声速为c_s = 7 km s〜(-1)。我们发现,由MRI驱动的湍流迅速发展,饱和状态的Shakura&Sunyaev参数α〜0.15-0.3受麦克斯韦应力的支配。湍流的许多无量纲特征(例如麦克斯韦应力与雷诺应力的比)与以前对吸积盘的MRI研究结果相似,因此对垂直盘的压缩程度,剪切速率和自身存在不敏感-重力?尽管自重会稍微增加波动幅度。非引力或弱引力盘中的密度加权速度速度色散为σ_x〜σ_y〜(0.4-0.6)c_s和σ_z〜(0.2-0.3)c_s,这表明MRI可以显着地影响银河湍流的观测水平。饱和态磁场强度B〜2μG与典型的银河值相似。当自重足够强时,由MRI驱动的高振幅密度微扰被摆动放大,形成结质量(约10至7太阳质量)的云。与以前的未磁化或强磁化的磁盘模型相比,当前模型中的非线性不稳定性阈值发生在表面密度至少降低50%时,对应于Toomre参数Q_(th)〜1.6。我们提供的证据表明,在类似于我们的模型的条件下形成的GMC之类的自重云可能会通过磁制动(最好是通过几乎垂直于其自旋轴的磁场)而失去许多原始的自旋角动量。最后,我们在较大的理论和观察范围内讨论当前结果,概述了未来研究的方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号