...
首页> 外文期刊>The Astrophysical journal >Magnetorotationally Driven Galactic Turbulence and the Formation of Giant Molecular Clouds
【24h】

Magnetorotationally Driven Galactic Turbulence and the Formation of Giant Molecular Clouds

机译:磁势驱动的银河湍流和巨分子云的形成

获取原文

摘要

Giant molecular clouds (GMCs), where most stars form, may originate from self-gravitating instabilities in the interstellar medium. Using local three-dimensional magnetohydrodynamic simulations, we investigate ways in which galactic turbulence associated with the magnetorotational instability (MRI) may influence the formation and properties of these massive, self-gravitating clouds. Our disk models are vertically stratified with both gaseous and stellar gravity and subject to uniform shear corresponding to a flat rotation curve. Initial magnetic fields are assumed to be weak and purely vertical. For simplicity, we adopt an isothermal equation of state with sound speed cs = 7 km s-1. We find that MRI-driven turbulence develops rapidly, with the saturated-state Shakura & Sunyaev parameter α ~ 0.15-0.3 dominated by Maxwell stresses. Many of the dimensionless characteristics of the turbulence (e.g., the ratio of the Maxwell to Reynolds stresses) are similar to results from previous MRI studies of accretion disks, hence insensitive to the degree of vertical disk compression, shear rate, and the presence of self-gravity—although self-gravity enhances fluctuation amplitudes slightly. The density-weighted velocity dispersions in non- or weakly self-gravitating disks are σx ~ σy ~ (0.4-0.6)cs and σz ~ (0.2-0.3)cs, suggesting that MRI can contribute significantly to the observed level of galactic turbulence. The saturated-state magnetic field strength ~ 2 μG is similar to typical galactic values. When self-gravity is strong enough, MRI-driven high-amplitude density perturbations are swing-amplified to form Jeans-mass (~107 M☉) bound clouds. Compared to previous unmagnetized or strongly magnetized disk models, the threshold for nonlinear instability in the present models occurs for surface densities at least 50% lower, corresponding to the Toomre parameter Qth ~ 1.6. We present evidence that self-gravitating clouds like GMCs formed under conditions similar to our models can lose much of their original spin angular momenta by magnetic braking, preferentially via fields threading nearly perpendicularly to their spin axes. Finally, we discuss the present results within the larger theoretical and observational context, outlining directions for future study.
机译:大多数恒星形成的巨型分子云(GMC)可能源自星际介质中的自引力不稳定性。使用局部三维磁流体动力学模拟,我们研究了与磁旋转不稳定性(MRI)相关的银河湍流可能影响这些巨大的自重云的形成和性质的方式。我们的磁盘模型在垂直方向上均具有气体重力和恒星重力,并且受到均匀的剪切力(对应于平坦的旋转曲线)。初始磁场被认为是弱的并且纯粹是垂直的。为简单起见,我们采用声速cs = 7 km s-1的等温状态方程。我们发现,由MRI驱动的湍流迅速发展,其饱和状态Shakura&Sunyaev参数α〜0.15-0.3受Maxwell应力支配。湍流的许多无量纲特征(例如,麦克斯韦应力与雷诺应力的比)与以前对吸积盘的MRI研究结果相似,因此对垂直盘压缩程度,剪切速率和自身存在不敏感-自重-尽管自重会稍微增加波动幅度。非引力或弱引力盘中的密度加权速度速度色散为σx〜σy〜(0.4-0.6)cs和σz〜(0.2-0.3)cs,这表明MRI可以显着地影响银河湍流的观测水平。 〜2μG的饱和态磁场强度类似于典型的银河值。当自重足够强时,由MRI驱动的高振幅密度微扰被摆动放大,形成牛仔裤质量(〜107M☉)束缚云。与以前的未磁化或强磁化的磁盘模型相比,当前模型中的非线性不稳定性阈值出现在表面密度低至少50%的情况下,对应于Toomre参数Qth〜1.6。我们提供的证据表明,在类似于我们的模型的条件下形成的自重云(如GMC)可能会通过电磁制动(最好是通过几乎垂直于其自旋轴的磁场)失去许多自旋角力矩。最后,我们在较大的理论和观察范围内讨论当前结果,概述了未来研究的方向。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号