...
首页> 外文期刊>The Astrophysical journal >THE GALAXY LUMINOSITY FUNCTION AND LUMINOSITY DENSITY AT REDSHIFT z = 0.1
【24h】

THE GALAXY LUMINOSITY FUNCTION AND LUMINOSITY DENSITY AT REDSHIFT z = 0.1

机译:REDSHIFT z = 0.1时的银河发光度函数和发光度密度

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Using a catalog of 147,986 galaxy redshifts and fluxes from the Sloan Digital Sky Survey (SDSS), we measure the galaxy luminosity density at z = 0.1 in five optical bandpasses corresponding to the SDSS band-passes shifted to match their rest-frame shape at z = 0.1. We denote the bands ~(0.1)u, ~(0.1)g, ~(0.1)r, ~(0.1)i, ~(0.1)z with λ_(eff) = (3216, 4240, 5595, 6792, 8111 A), respectively. To estimate the luminosity function, we use a maximum likelihood method that allows for a general form for the shape of the luminosity function, fits for simple luminosity and number evolution, incorporates the flux uncertainties, and accounts for the flux limits of the survey. We find luminosity densities at z = 0.1 expressed in absolute AB magnitudes in a Mpc3 to be (-14.10 +- 0.15, -15.18 +- 0.03, -15.90 +- 0.03, -16.24 +- 0.03, -16.56 +- 0.02) in (~(0.1)u, ~(0.1)g, ~(0.1)r, ~(0.1)i, ~(0.1)z), respectively, for a cosmological model with Ω_0 = 0.3, Ω_Λ = 0.7, and h = 1 and using SDSS Petrosian magnitudes. Similar results are obtained using Sersic model magnitudes, suggesting that flux from outside the Petrosian apertures is not a major correction. In the ~(0.1)r band, the best-fit Schechter function to our results has φ_* = (1.49 +- 0.04) x 10~(-2) h~3 Mpc~(-3), M_* - 5 log_(10) h = -20.44 +- 0.01, and α = -1.05 +- 0.01. In solar luminosities, the luminosity density in ~(0.1)r is (1.84 +- 0.04) x 10~8 h L_(0.1_(solar radius)) Mpc~(-3). Our results in the ~(0.1)g band are consistent with other estimates of the luminosity density, from the Two-Degree Field Galaxy Redshift Survey and the Millennium Galaxy Catalog. They represent a substantial change (~0.5 mag) from earlier SDSS luminosity density results based on commissioning data, almost entirely because of the inclusion of evolution in the luminosity function model.
机译:使用来自斯隆数字天空调查(SDSS)的147,986个星系红移和通量的目录,我们测量了五个光学带通中z = 0.1时的星系光度密度,对应于被移动以匹配其在z处的静止帧形状的SDSS带通= 0.1。我们用λ_(eff)=(3216,4240,5595,6792,8111 A)表示波段〜(0.1)u,〜(0.1)g,〜(0.1)r,〜(0.1)i,〜(0.1)z ), 分别。为了估算光度函数,我们使用最大似然方法,该方法考虑了光度函数形状的一般形式,适合于简单的光度和数值演化,并包含了通量不确定性,并考虑了测量的通量极限。我们发现在Mpc3中以绝对AB幅度表示的z = 0.1处的光度密度为(-14.10 +-0.15,-15.18 +-0.03,-15.90 +-0.03,-16.24 +-0.03,-16.56 +-0.02)对于Ω_0= 0.3,Ω_Λ= 0.7和h =的宇宙模型,分别为(〜(0.1)u,〜(0.1)g,〜(0.1)r,〜(0.1)i,〜(0.1)z) 1,并使用SDSS Petrosian幅度。使用Sersic模型幅度可获得类似的结果,这表明从Petrosian孔径之外的通量不是主要的校正。在〜(0.1)r波段中,最符合我们结果的Schechter函数具有φ_* =(1.49 +-0.04)x 10〜(-2)h〜3 Mpc〜(-3),M_ *-5 log_ (10)h = -20.44±0.01,α= -1.05±0.01。在太阳光度下,〜(0.1)r中的光度密度为(1.84 +-0.04)x 10〜8 h L_(0.1_(太阳半径))Mpc〜(-3)。我们在〜(0.1)g波段中得到的结果与两度野外星系红移调查和千年星系目录中的其他光度密度估计值一致。与基于调试数据的早期SDSS发光度密度结果相比,它们代表了很大的变化(〜0.5 mag),几乎完全是因为发光度函数模型中包含了演化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号