...
首页> 外文期刊>The Astrophysical journal >THREE-DIMENSIONAL INTERACTION BETWEEN A PLANET AND AN ISOTHERMAL GASEOUS DISK. II. ECCENTRICITY WAVES AND BENDING WAVES
【24h】

THREE-DIMENSIONAL INTERACTION BETWEEN A PLANET AND AN ISOTHERMAL GASEOUS DISK. II. ECCENTRICITY WAVES AND BENDING WAVES

机译:行星与等温气体盘之间的三维相互作用。二。偏心波和弯曲波

获取原文
获取原文并翻译 | 示例

摘要

We perform linear calculations to investigate three-dimensional density waves excited by planets on elliptical and inclined orbits in isothermal protoplanetary disks. We consider small planets that have no disk gap around their orbits. Eccentricities and inclinations of planets are assumed to be smaller than the disk aspect ratio. This is reasonable for planets with no disk gap. The density wave excited by a planet with nonzero small eccentricity e and inclination i is decomposed into three components: the waves by a planet with e = i = 0, the eccentricity waves, and the bending waves. The eccentricity waves are related to the noncircular motion of the planet, while the bending waves are excited by the motion normal to the equatorial plane. In our formulation, these waves are described by the same wave equations, and only the perturbing potentials are different. We numerically solve the wave equations and calculate the force exerted on the planet by the waves. The force is not parallel to the velocity of the epicycle motion. From the force obtained, we also find the evolution rates in the eccentricity, the inclination, and the longitudes of the perihelion and the ascending node. The characteristic evolution time of these orbital elements is about 300(r/1 AU)~2 yr for Earth-sized planets in the minimum-mass nebula disk. Eccentricity damping is caused by eccentricity waves, while inclination damping is due to bending waves for planets with small eccentricities and inclinations and with no disk gap. This means that to lowest order there is no coupling between the evolutions of the eccentricity and the inclination.
机译:我们执行线性计算以研究行星在等温原行星盘中的椭圆和倾斜轨道上激发的三维密度波。我们认为小型行星的轨道周围没有盘隙。假定行星的偏心距和倾斜度小于圆盘的纵横比。这对于没有磁盘间隙的行星是合理的。由非零小偏心率e和倾斜度i的行星激发的密度波分解为三个分量:e = i = 0的行星所产生的波,偏心率波和弯曲波。偏心波与行星的非圆周运动有关,而弯曲波由垂直于赤道平面的运动激发。在我们的公式中,这些波由相同的波方程描述,只有扰动电位不同。我们用数值方法求解波动方程,并计算波动对行星施加的力。该力不平行于行星运动的速度。从获得的力中,我们还发现了近日点和上升节点的偏心度,倾斜度和经度的演化速率。在最小质量星云盘中,对于地球大小的行星,这些轨道元素的特征演化时间约为300(r / 1 AU)〜2 yr。偏心阻尼是由偏心波引起的,而倾斜阻尼是由于偏心和倾斜较小且无盘间隙的行星的弯曲波引起的。这意味着,在最低阶上,偏心距和倾斜度之间没有耦合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号