...
首页> 外文期刊>The Astrophysical journal >SELF-CONSISTENT MAGNETOHYDRODYNAMIC MODELING OF CURRENT SHEET STRUCTURE AND HEATING USING REALISTIC DESCRIPTIONS OF TRANSPORT PROCESSES
【24h】

SELF-CONSISTENT MAGNETOHYDRODYNAMIC MODELING OF CURRENT SHEET STRUCTURE AND HEATING USING REALISTIC DESCRIPTIONS OF TRANSPORT PROCESSES

机译:利用运输过程的真实描述对板料结构进行自洽磁热力学建模和加热

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A magnetohydrodynamic (MHD) model of an electron-ion, collision-dominated plasma that includes the electrical conductivity and thermoelectric tensors in Ohm's law is used to generate current sheet solutions in parameter ranges that correspond to those of the solar transition region and lower corona. The model contains a prescribed sheared magnetic field with a characteristic length scale L. The characteristic sheet width is 2L, but it is found that the temperature has transition region or coronal values only within a diffusion region (DR) with a width several orders of magnitude smaller than 2L. The heating rate per unit mass and flow speed in the DR are orders of magnitude larger, and the density is orders of magnitude smaller than in the surrounding plasma. The heating rate per unit volume is a maximum in the DR and falls off steadily outside the DR. The Joule heating rate and current density each consist of a conduction component driven by the center-of-mass electric field and a thermoelectric component driven by the temperature gradient. It is found that these components largely cancel, leading to a total heating rate and current density orders of magnitude smaller than either of their components. This suggests that thermoelectric current drive is important in determining current sheet structure. The center-of-mass electric field that provides the energy to maintain the plasma in a steady state is almost entirely the convection electric field. The electron magnetization M_e is the product of the electron cyclotron frequency and the electron-ion collision time. Nonzero values of M_e cause the conductivity and thermoelectric tensors to be anisotropic. It is found that the large values of M_e that occur in the DR increase the heating rates per unit volume and mass by several orders of magnitude and can change the sign of the heating rate per unit mass from negative to positive, corresponding to a change from a cooling process to a heating process. This suggests that electron magnetization, and hence anisotropic transport, is a major factor in current sheet heating.
机译:包含欧姆定律中的电导率和热电张量的电子离子,碰撞占主导地位的等离子体的磁流体动力学(MHD)模型用于生成与太阳跃迁区域和较低日冕的参数范围相对应的电流表解。该模型包含具有特征长度比例L的规定的剪切磁场。特征薄片宽度为2L,但是发现温度仅在宽度为几个数量级的扩散区域(DR)内具有过渡区域或冠状值。小于2L。 DR中每单位质量的加热速率和流速比周围的等离子体要大几个数量级,密度要小几个数量级。 DR中每单位体积的加热速率最大,并且在DR外稳步下降。焦耳加热速率和电流密度分别由一个由质心电场驱动的传导分量和一个由温度梯度驱动的热电分量组成。已经发现这些成分在很大程度上相互抵消,从而导致总加热速率和电流密度都比它们的任何一个都小几个数量级。这表明热电电流驱动对于确定电流表结构很重要。提供能量以将等离子体维持在稳定状态的质心电场几乎完全是对流电场。电子磁化强度M_e是电子回旋加速器频率和电子离子碰撞时间的乘积。 M_e的非零值会导致电导率和热电张量各向异性。发现在DR中出现的M_e值较大,会使单位体积和质量的加热速率提高几个数量级,并且可以将单位质量的加热速率的符号从负变为正,对应于从冷却过程到加热过程。这表明电子磁化以及各向异性传输是当前薄板加热的主要因素。

著录项

  • 来源
    《The Astrophysical journal》 |2005年第2pt1期|p.1168-1175|共8页
  • 作者

    MICHAEL L. GOODMAN;

  • 作者单位

    Institute for Scientific Research, Inc., 2500 Fairmont Avenue, Suite 734, Fairmont, WV 26555-2720;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 天文学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号