...
首页> 外文期刊>The Astrophysical journal >MAGNETOSPHERIC ECLIPSES IN THE DOUBLE-PULSAR SYSTEM PSR J0737-3039
【24h】

MAGNETOSPHERIC ECLIPSES IN THE DOUBLE-PULSAR SYSTEM PSR J0737-3039

机译:双脉冲系统PSR J0737-3039中的磁球漏斗

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We argue that eclipses of radio emission from the millisecond pulsar A in the double-pulsar system PSR J0737—3039 are due to synchrotron absorption by plasma in the closed field line region of the magnetosphere of its normal pulsar companion B. On the basis of a plausible geometric model, pulsar A's radio beam only illuminates pulsar B's magnetosphere for about 10 minutes surrounding the time of eclipse. During this time it heats particles at r approx > 10~9 cm to relativistic energies and enables extra plasma, beyond that needed to maintain the corotation electric field, to be trapped by magnetic mirroring. An enhancement of the plasma density by a factor of ~ 10~2 is required to match the duration and optical depth of the observed eclipses. The extra plasma might be supplied by a source near B through Bγ pair creation by energetic photons produced in B's outer gap. Relativistic pairs cool by synchrotron radiation close to where they are born. Reexcitation of their gyrational motions by cyclotron absorption of A's radio beam can result in their becoming trapped between conjugate mirror points in B's magnetosphere. Because the trapping efficiency decreases with increasing optical depth, the plasma density enhancement saturates even under steady state illumination. The result is an eclipse with finite, frequency-dependent optical depth. After illumination by A's radio beam ceases, the trapped particles cool and are lost. The entire cycle repeats every orbital period. We speculate that the asymmetries between eclipse ingress and egress result in part from the magnetosphere's evolution toward a steady state when illuminated by A's radio beam. We predict that A's linear polarization varies with both eclipse phase and B's rotational phase.
机译:我们认为,双脉冲星系统PSR J0737-3039中毫秒脉冲星A的无线电发射偏光是由于等离子体在其正常脉冲星伴侣B的磁层的封闭磁场线区域中被同步加速器吸收。似乎是合理的几何模型,脉冲星A的无线电束仅在日食周围照亮脉冲星B的磁层约10分钟。在这段时间内,它将大约r> 10〜9 cm的粒子加热到相对论能量,并使多余的等离子体(超出维持同向电场所需的等离子体)被磁镜捕获。为了使观测到的日食的持续时间和光学深度匹配,需要将血浆密度提高约10〜2倍。额外的等离子体可能是由B附近的光源通过B的外部间隙中产生的高能光子通过Bγ对产生而提供的。相对论对通过同步加速器辐射靠近其出生的地方冷却。通过回旋加速器吸收A的无线电束来重新激发它们的回转运动,可能导致它们陷入B磁层的共轭反射镜点之间。因为捕获效率随光学深度的增加而降低,所以即使在稳态照明下,等离子体密度的增强也会饱和。结果是日食具有有限的频率相关的光学深度。在A的无线电束停止照射后,被捕获的粒子冷却并消失。整个周期在每个轨道周期重复一次。我们推测,日食进出之间的不对称性部分是由于当A的无线电束照射时磁层向稳态的演变。我们预测A的线性极化随月食相位和B的旋转相位而变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号